

## FILL IN THE CONCEPT MAP FOR MATTER



## TWO TYPES OF SUBSTANCES

PURE SUBSTANCES

* A sample of matter that has definite chemical and physical properties.

Elements and compounds are pure substances.

Examples: table salt and sugar



## TWO TYPES OF SUBSTANCES

## MIXTURES

Two Types: Heterogeneous \& Homogeneous


- Nothing new is created. It is the just the same substances mixed together.





## Properties of Solution

Soluble - anything that dissolves in another substance. Ex: Salt is soluble in water. Insoluble - anything that does not dissolve in another substance. Ex: Oil is insoluble in water.


## Properties of Solution

## Rate Solutes Dissolves



Dilute - weak solution "less" solute present


## Properties of Solution

- Concentration: the quantity of solute dissolved in a given quantity of solution.
- different concentrations, depending on how much solute and solvent are present.




Unsaturated: below the line
Saturated: On the line
Supersaturated: above the line

Solubility of Sodium Acetate


## Reading a Solubility Curve

- How much KCl will dissolve in 100 g of water at $30^{\circ} \mathrm{C}$ ?

$$
34 \text { grams }
$$

- At what temperature will 50 g of $\mathrm{KNO}_{3}$ dissolve in 100 g of water?
$32^{\circ} \mathrm{C}$



How much $\mathrm{H}_{2} \mathrm{O}$ is required to just dissolve 100 g $\mathrm{NaNO}_{3}$ at $20^{\circ} \mathrm{C}$ ?
$\underline{89 \mathrm{~g}}$
At $60^{\circ} \mathrm{C}, 50$ grams of KCl is dissolved in 100 g of water. Is this gof water. Is this unsaturated or supersaturated?

Supersaturated

## Properties of Solution

- Conductivity : the ability of an aqueous solution to carry an electrical current.
- Electrolyte solution: solution that generally contains ions, atoms or molecules that have lost or gained electrons, and is electrically conductive.

- Strong acids are strong electrolytes.
- Strong bases are also strong electrolytes.





## Uses of Acids



- Acetic Acid = Vinegar
- Citric Acid = lemons, limes, \& oranges. It is in many sour candies such as lemonhead \& sour patch.
Ascorbic acid $=$ Vitamin $\mathbf{C}$ which your body needs to function.
- Sulfuric acid is used in the production of fertilizers, steel, paints, and plastics
- Car batteries





## Why do bases feel slippery?

- Bases react with oils and fats on the skin. Getting bases and bleaches on your fingers literally turns the fat in your skin, into soap, hence the slippery.



## Uses of Bases (Alkali)

- Bases give soaps, ammonia, and many other cleaning products some of their useful properties.
- The OH- ions interact strongly with certain strongly with certain
substances, such as dirt and substan
- Chalk and oven cleaner are examples of familiar products that contain bases. Your blood is a slightly basic solution.




## pH Scale

- The strength of an acid and base depends on the distance it is away from 7.
-The closer to 0 and closer to 14 /are the strongest.

Neutral

## pH Scale

## - Strongest acid is HCl ( $\mathrm{pH}=0$ ) <br> Strongest base is NaOH (Drano) ( $\mathrm{pH}=14$ ) <br> 



## Determining pH

- The pH of a solution indicates its concentration of hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$ or the concentration of hydroxide ions (OH-).
- The conc. of the two ions are related.
- If one increases, the other has decreased.



## Determining pH

The pH of a substance is easily measured by comparing the color the substance turns a strip of pH paper with the color scale on the pH paper dispenser.


## The pH is the negative of the

 power of 10.The hydronium ion $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ concentration of apple juice is $0.001 \mathrm{~mol} / \mathrm{L}$ or $1 \times 10^{-3} \mathrm{M}$ pH of apple juice: 3,



| Acids | Bases |
| :---: | :---: |
| $\begin{gathered} \mathrm{H}^{+} \mathrm{H}^{+} \mathrm{H}^{+} \\ \mathrm{H}^{+} \mathrm{H}^{+} \mathrm{H}^{+} \\ \mathrm{H}^{+} \mathrm{OH}^{-} \end{gathered}$ | $\begin{array}{cc} \mathrm{OH}^{-} & \mathrm{OH}^{-} \\ \mathrm{OH}^{-} & \mathrm{OH}^{-} \mathrm{H}^{+} \\ \mathrm{OH}^{-} \mathrm{OH}^{-} \mathrm{OH}^{-} \end{array}$ |
| Acids are high in Hydrogen ion concentration | Bases are high in Hydroxide ion concentration |

## Acid-Base Reactions

 Neutralization- A neutralization reaction is the reaction between an acid and a base.
A strong acid can neutralize a strong base. A weak acid can neutralize a weak base.
- Antacids relieve indigestion, usually caused by excess stomach acid.
- Antacid (a weak base) reacts with the strong acid in the stomach to produce a weaker acid, and thus the person will feel better.



## Section 3: Acids,

 Bases, and Salts in the Home

## Acid + Base = Salt

Acid reacts with a base, hydronium ions react with hydroxide ions to form water and a salt. ACID

## ACID + BASE $\rightarrow$ SALT + WATER

$-\mathrm{HCl}+\mathrm{NaOH}=\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$
Made: by neutralization reactions
Uses: cleaning, de-icing, ceramic glazes,
water softeners, fire extinguishers..



| Name, Formula | Use | Other Information |
| :---: | :---: | :---: |
| Aluminum Hydroxide, $\mathrm{Al}(\mathrm{OH})_{3}$ | Color-fastfabris, antacid, water purification as shown in Figure 4A | Sticky gel that collects suspended clay and dirtparticles on its surface |
| Calcium Hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$ | Leather-making, mortar and plaster, lessen adidity of soil | Called caustic lime |
| Magnesium Hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$ | Laxative, antacid | Called milk of magnesia |
| Sodium Hydroxide, NaOH | To make soap, oven cleaner, drain cleaner, textiles, and paper | Called lye and caustic soda; generates heat (exothermic) when combined with water, reacts with metals to form hydrogen |
| Ammonia, $\mathrm{NH}_{3}$ | Cleaners, fertilizer, to make rayon and nylon | Irritating odor that is damaging to nasal passages and lungs |


| Table 3 Some Common Salts and Their Uses |  |  |
| :--- | :--- | :--- |
|  | Common Name | Uses |
| Name, Formula | Sodium Chloride, NaCl | Food preparation, manufacture of chemicals |
| Sodium Hydrogen Carbonate, <br> $\mathrm{NaHCO}_{3}$ | Sodium bicarbonate <br> Baking soda | Food preparation, antacids |
| Calcium Carbonate, $\mathrm{CaCO}_{3}$ | Calcite, chalk | Manufacture of paint and rubber tires |
| Potassium Nitrate, $\mathrm{KNO}_{3}$ | Saltpeter | Fertilizers |
| Potassium Carbonate, $\mathrm{K}_{2} \mathrm{CO}_{3}$ | Potash | Manufacture of soap and glass |
| Sodium Phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$ | TSP | Detergents |
| Ammonium Chloride, $\mathrm{NH}_{4} \mathrm{Cl}$ | Sal ammoniac | Dry-cell batteries |

## What Are Some Names of Acids?

- Acetic acid is found in vinegar
- Ascorbic acid is found in citrus fruits
- Hydrochloric acid is found in your stomach
- Phosphoric acid is found in fertilizers and the soft drinks you drink
- Nitric acid is used in some explosives like TNT


[^0]

## What Are Some Names of Bases?

- Ammonia $\left(\mathrm{NH}_{3}\right)$ is often found in cleaning products
- Potassium hydroxide (KOH) has many uses in industry, and can be a precursor to making soaps
- Sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ is found in baking soda
- Calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ is found in antacids
- Sodium hydroxide $(\mathrm{NaOH})$ is found in lye


KOH in pure form


Antacids neutralize stomach acids


Hydrangeas are blue when grown in acidic soil and pink when grown in basic (alkaline soil)

| Which of these substances are acids? |  |  |  |
| :---: | :---: | :---: | :---: |
| Hydrochloric acid | $V$ | Vinegar | $\sqrt{ }$ |
| Lemon juice | $V$ | Bleach |  |
| Toothpaste |  | Sulphuric acid | $\sqrt{ }$ |
| Bath salts |  | Washing up liquid |  |


[^0]:    

