

Heterogeneous Mixtures

• Does not have a uniform in composition.

-Every spoonful will have a different amount of each component

Ex) fruit salad, dirt, granite

Homogeneous Mixtures Mixture looks uniform even because the components are too small to be seen. Ex: Kool-Aid, tea -Solutions • Ex: Alloys

Homogeneous vs Heterogenous

• Examples:

mixture

- A Granite, a heterogeneous
 - B Human blood, a heterogeneous mixture
- C Copper(II) sulfate (CuSO₄) in water, a homogeneous mixture (solution)

Types of Mixtures						
Types of Matter						
			Ö	& @&&@ &@&&@ &@@&@ &@@@@		
Homogeneous mixture	Heterogeneous mixture	Elem	ent	Compound		
Type of matter	Definition		Exa	amples		
Homogeneous mixture	A mixture that contains more than one type of matter and is the same throughout.		soda poj chocola	p, air, te ice cream		
Heterogeneous mixture	A mixture that contains more chicken soup, soil, than one type of matter and fudge ripple ice cream is not the same throughout.					
Element	A substance that con only one type of atom		copper metal, oxygen gas, liquid nitrogen			
Compound	A substance that con more than one type o			lt, rust (iron oxide), dioxide gas		

Properties of Solution

Soluble – anything that dissolves in another substance. **Ex: Salt is <u>soluble</u> in water. Insoluble** – anything that does not dissolve in another substance. **Ex: Oil is <u>insoluble</u> in water**.

SOLUTION

becomes unstable,

crystals form

9 ⁶

-0 0

Properties of Solution

- **Conductivity** : the ability of an aqueous solution to carry an electrical current.
- Electrolyte solution: solution that generally contains ions, atoms or molecules that have lost or gained electrons, and is electrically conductive.

 Strong acids are strong electrolytes.

Strong bases are also strong

Ex: lons (Na+ &

electrolytes.

CI-)

Acids

Properties of Acids

Sour taste.

- pH below 7
- Changes blue litmus paper red.
- Very corrosive to metals (meaning that they react with metals producing hydrogen gas)
- Acids react with bases to produce salts and water
- React with metals (Tomatoes turn Aluminum foil black.)

Name, Formula	Use	Other Information		
Acetic Acid, CH ₃ COOH	Food preservation and preparation	When in solution with water, it is known as vinegar.		
Acetylsalicylic FOUL	mportant acids	toremember		
Ascorbic Acid, H ₂ C ₆ H ₆ O ₆	Antioxidant, vitamin	Called vitamin C		
Carbonic Acid, H ₂ CO ₃	Carbonated drinks	Involved in cave, stalactite, and stalagmite formation and acid rain		
Hydrochloric Acid, HCl	Digestion as gastric juice in stomach, to clean steel in a process called pickling	Commonly called muriatic acid		
Nitric Acid, HNO.	er interesti	Coloriess, yet vellows when		
Phosphoric Acid, H ₃ PO ₃	To make detergents, fertilizers, and soft drinks	Slightly sour but pleasant taste, detergents containing phosphates cause water pollution		
Sulfuric Acid, H ₂ SO ₄	Car batteries, to manufacture fertilizers and other chemicals	Dehydrating agent, causes burns by removing water from body cells		

Bases

Properties of Bases

Bitter taste.

- Feels slippery.
- pH above 7.
- .
- Changes red litmus paper blue.
- Very corrosive
- Bases react with acids to produce salts and water
- Do not react with metals

Why do bases feel slippery?

 Bases react with oils and fats on the skin. Getting bases and bleaches on your fingers literally turns the fat in your skin, into soap, hence the slippery.

Determining pH

- The pH of a solution indicates its concentration of hydronium ions (H₃O⁺) or the concentration of hydroxide ions (OH-).
 - The conc. of the two ions are related.
 - If one increases, the other has decreased.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
H ₃ O ⁺ acids increasingly acidic				neutral	alkalis increasingly alkaline				line	H				

Determining pH

The pH of a substance is easily measured by comparing the color the substance turns a strip of pH paper with the color scale on the pH paper dispenser.

The pH is the negative of the power of 10. The hydronium ion [H₃O⁺] concentration of apple juice is 0.001 mol/L or 1x10⁻³ M pH of apple juice: _3_,

	[HI+]	pH	Common examples	
	1 x 10°	•	Hydrochloric acid	
	1 x 10 ⁻¹	1	Stomachacid	
	1 x 10 ⁻²	2	Lemonjuice	
Acids	1 x 10 ⁻³	3	Vinegar	
	1 x 10-4	4	Soda (carbonic acid)	
	1 x 10 ⁻⁵	5	Rainwater	
	1 x 10-6	6	Milk	
Neutral	1 x 10 ⁻⁷	7	Pure water	
	1 x 10 ⁻⁸	8	Egg whites	
	1 x 10-9	9	Bakingsoda	
	1 x 10 ⁻¹⁰	10	Antacid	
Bases	1 x 10-11	11	Ammonia	
	1 x 10 ⁻¹²	12	Quicklime (calcium hydroxide)	
	1 x 10 ⁻¹³	13	Drain cleaner	

Acid-Base Reactions Neutralization

 A neutralization reaction is the reaction between an acid and a base.

A <u>strong acid</u> can neutralize a <u>strong base</u>. A weak acid can neutralize a weak base.

- Antacids relieve indigestion, usually caused by excess stomach acid.
- Antacid (<u>a weak base</u>) reacts with the <u>strong acid in the stomach</u> to <u>produce a</u> <u>weaker acid</u>, and thus the person will feel better.

Household Acids

Lemon juice contains citric acid and vinegar contains acetic acid.

Commercial descaling solutions contain strong and corrosive acids to remove deposits of limescale.

 Concentrated sulphuric acid is extremely dangerous. It is found in car batteries.

Name, Formula	Use	Other Information
Aluminum Hydroxide, Al(OH) ₃	Color-fast fabrics, antacid, water purification as shown in Figure 4A	Sticky gel that collects suspended clay and dirt particles on its surface
Calcium Hydroxide, Ca(OH) ₂	Leather-making, mortar and plaster, lessen acidity of soil	Called caustic lime
Magnesium Hydroxide, Mg(OH) ₂	Laxative, antacid	Called milk of magnesia
Sodium Hydroxide, NaOH	To make soap, oven cleaner, drain cleaner, textiles, and paper	Called lye and caustic soda; generates heat (exothermic) when combined with water, reacts with metals to form hydrogen
Ammonia, NH ₃	Cleaners, fertilizer, to make rayon and nylon	Irritating odor that is damaging to nasal passages and lungs

Table 3 Some Common Salts and Their Uses					
Name, Formula	Common Name	Uses			
Sodium Chloride, NaCl	Salt	Food preparation, manufacture of chemicals			
Sodium Hydrogen Carbonate, NaHCO3	Sodium bicarbonate Baking soda	Food preparation, antacids			
Calcium Carbonate, CaCO ₃	Calcite, chalk	Manufacture of paint and rubber tires			
Potassium Nitrate, KNO3	Saltpeter	Fertilizers			
Potassium Carbonate, K ₂ CO ₃	Potash	Manufacture of soap and glass			
Sodium Phosphate, Na ₃ PO ₄	TSP	Detergents			
Ammonium Chloride, NH ₄ Cl	Sal ammoniac	Dry-cell batteries			

What Are Some Names of Bases?

- Ammonia (NH₃) is often found in cleaning products
- Potassium hydroxide (KOH) has many uses in industry, and can be a precursor to making soaps
- Sodium bicarbonate (NaHCO₃) is found in baking soda
- Calcium carbonate (CaCO₃) is found in antacids
- Sodium hydroxide (NaOH) is found in lye

KOH in pure form

Hydrangeas are blue when grown in acidic soil and pink when grown in basic (alkaline soil)

