

Joke for the Day

- Why shouldn't you trust an atom?
- They make up everything.

What is in an Atom?

- Atoms are the building blocks of everything.
- Atoms can be divided, but not easily on Earth.
- No overall charge (Neutral)

118 different types of Atoms

What is in an Atom?

What is in an Atom?

Electrons

What is in an Atom?

Neutrons

- Neutrons have no charge (0) and are neutral.
- Neutrons contribute to overall atomic mass of the atom.
- Adding and removing neutrons create isotopes

What is in an Atom?

- Contains the protons and neutrons
- Where most of the mass of the atom is concentrated
- Has an overall
positive (+) charge
Why?

Atomic Number

- Atomic number $=$ the number of protons
- If the atom is neutral, this is also the number of protons.
- No two elements share the same atomic number or number of protons

What is the atomic number for the atoms below?
Lithium: 3 Hydrogen:
Uranium:

Mass Number

- Mass number= the total number of subatomic particles in the nucleus
- The sum of the protons and the neutrons.
- Example: A fluorine atom has 9 protons and 10 neutrons, so $A=19$ for fluorine.

Finding \# of Neutrons

We can find the number of neutrons by
subtracting the Atomic Number from
the Mass Number.

Mass number

- Atomic number Number of neutrons

How many neutrons does Sulfur (S) have?

$$
32-16=16 \text { Neutrons }
$$

How many neutrons does Aluminum (Al) have?
27-13 = 14 Neutrons

Try this....

Element	Number of Protons	Number of Neutrons	Number of Electrons	Atomic Mass	Atomic Number
Tantalum Ta	73	108	73	181	73
Radium Ra	88	138	88	226	88

Identify the following atoms based on their Bohr Model

lon Formation

- A neutral atom that becomes charged is called an ion.
- Different number of protons and electrons
- Form by adding or removing the number of electrons ONLY.
- Figure out number of electrons as a neutron atom. Then start adding or removing electrons.

Ion Formation

Number of Protons $=\frac{11}{12}$
Number of Neutrons $=\underline{12}$
Number of Electrons $=10$

Mass Number $=\underline{23}$
Identify the element $=\underline{\text { Sodium }}$

Is this an Atom or an Ion? Ion
Identify the Ion? $\quad \mathrm{Na}^{+1}$

Ion symbols are written the element symbol with the charge written on the top right.

EXAMPLE

A neutral magnesium (Mg) atom has 12 protons and 12 electrons. If the magnesium atom loses 2
Electrons. What is it's net charge?
To find net charge of an ion, subtract the number of electrons from the number of protons.

Number of protons $=12$

- Number of electrons $=\frac{10}{+2}$

EXAMPLE 1:

1. Sodium (Na) atoms have 11 protons and 11 electrons with a net charge of \qquad
\qquad
2. If the Sodium ion only has 10 electrons, what is the net charge of the ion? \qquad (+11-10 = +1) .
3. What is the chemical symbol for this ion? Na^{+1}

$$
{ }_{11}^{23} \mathrm{Na}^{+1}
$$

EXAMPLE 2:

1. Beryllium (Be) atoms have 4 protons and 4 electrons with a net charge of 0 .
2. If the Beryllium ion has only 2 electrons, what is the net charge of the ion? $(+4-2=+2)$.
3. What is the chemical symbol for this ion? $\xrightarrow{\mathrm{Be}^{2+}}$

Write the nuclear symbol form for the following atoms or ions:
A. $8 \mathrm{p}^{+}, 8 \mathrm{n}, 8 \mathrm{e}^{-}$ \qquad
B. $17 p^{+}, 20 n, 17 e^{-}$
C. $47 p^{+}, 60 n, 46 e^{-}$

Isotopes

- An isotope is an atom that has the same number of protons but a different number of neutrons (relative to other atoms of the element).
- Same number of electrons
- They vary in mass and mass number.

Complete Nuclear Symbols

Isotopes should be written using the complete nuclear symbol or by using a hyphen symbol. A charge should be indicated if the atom is not neutral.

EXAMPLE:

$$
\text { Chlorine - } 37 \leftarrow \text { mass number }
$$

EXAMPLE:

$$
\text { Chlorine - } 35 \leftarrow \text { mass number }
$$

$$
{ }_{17}^{37} \mathrm{Cl} \quad{ }_{17}^{35} \mathrm{Cl}
$$

What is different about the two symbols above?

What do they have in common?

What are Isotopes?

All atoms of an element have the same atomic number and the same number of protons. However, atoms do not necessarily have the same number of neutrons. Atoms with the same number of electrons and protons, but different numbers of neutrons, are called isotopes. Different isotopes belong to the same element because they have the same number of electrons, which means that they all behave almost the same in chemical reactions.

Isotopes

- Boron-10 $\left({ }^{10} \mathrm{~B}\right)$ has 5 p and 5 n
- Boron-11 ($\left.{ }^{11} \mathrm{~B}\right)$ has 5 p and 6 n

Atoms are same element but have different mass numbers making them isotopes.

Isotopes of Hydrogen

Hydrogen - 1
Protons $=1$
Electrons $=1$
Neutrons $=0$
Hydrogen - 2
Protons $=1$
Electrons =
Neutrons $=1$
Hydrogen - 3
Protons $=1$
Electrons $=1$
Neutrons $=2$

Isotopes?

Which of the following represent isotopes of the same element? Which element?

Neptunium
Isotope

Learning Check

An atom has 14 protons and 20 neutrons.
A. Its atomic number is

1) 14
2) 16
3) 34
B. Its mass number is
4) 14
5) 16
6) 34
C. The element is
7) Si
8) Ca
9) Se
D. Another isotope of this element is
10) ${ }_{16}^{34} \mathrm{X}$
11) ${ }^{34} \mathrm{X}$
12) ${ }^{36} \mathrm{X}$
16
14
14

| Complete the following chart: | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \qquadIsotope name atomic \# mass \# \# of
 protons \# of
 neutrons
 \# of electrons
 Potassium-37
 Oxygen-17
 uranium-235
 uranium-238
 boron-10
 boron-11 | | |
| 3. How can you tell isotopes apart? | | |

Modern Atomic Theory

- Electrons can be found only in certain energy levels, not between levels.
- Electron location (not precise) is limited to energy levels.
- Electron act like

Energy Level

Bohr models show every electrons on each energy level of an atom.

1) Since you have 2 electrons already drawn, you need to add 4 more.
2) These go in the $2^{\text {nd }}$ shell.
3) Add one at a time starting on the right side and going counter clock-wise.

 waves.

- The whole shaded
region is called an
electron cloud.
- Describe the path the electron takes around the nucleus
- They have different amounts of energy
- Energy levels closest to the nucleus have the least energy.
Electrons are arranged in a predictable pattern from inner to outer levels.

Bohr's Model

Energy Levels

Like an elevator
it can only be on certain floors
Never in between
Energy levels get closer together the higher you go
Each has room for a certain number of electrons

Mystery Isotope Activity Instructions
Student Instructions for "Mystery Isotope Activity":

- Each group will create a model of their given isotope on a piece of construction paper. Use the following information:

1. Title the construction paper: "Mystery Isotope \# based on the number on their strip DO NOT write the based on the number on their strip. DO NOT write the name of the isotope.
2. Figure out the number of protons, neutrons, and electrons in the isotope.
3. On your own data sheet, record your information.
4. Use the stickers to create a Bohr model of the isotope on the construction paper.
5. Be sure to assign each subatomic particle a color and create a key. You need 3 different colors, one for each subatomic particle.

Practice Problem

Name	Symbol	Atomic number	Mass Number	Number of neutrons	Number of Electrons	Charge
hydrogen -2	${ }^{2} \mathrm{H}$	1	2	1	1	0
	${ }^{3} \mathrm{H}$					
sodium- 22	${ }^{22} \mathrm{Na}^{+}$				10	
		12	24		12	
	12	25		13		
	${ }^{46} \mathrm{Ti}^{-2}$					
	${ }^{107} \mathrm{Ag}$					

Practice Problems

Element	Atomic Number	Mass Number	Protons	Neutrons	Electrons
Carbon	6	14			
Oxygen	8			10	
Potassium	1		19	20	
Gold	79	197			
Tin	50			68	
Zinc		64	30		

Practice Problem

In addition to atomic symbol, we can represent atoms by name and mass number.

Symbol	Name
${ }_{6}^{12} C^{+1}$	Carbon-12
${ }_{6}^{18} F$	
${ }_{9}^{11} B$	

Practice Problems

1. List out the number of protons, electrons, and neutrons of

207
Pb
82
3. Atoms of a certain isotope have 73 neutrons and a mass of 123 .
a. What is the atomic number?
b. How many electrons are there?
c. What is the name of the element?
d. Write the chemical symbol for this isotope.
82

What is the atomic number?
2. List out the number of protons, electrons,
and neutrons of

55
Mn^{+2}
25
Mn ${ }^{+2}$
25

