The Big Picture: A Review of Biology

<u>Cells and Their Processes</u>

Organic Compounds

- A compound is a combination of 2 or more atoms
- An organic compound is a compound that contains carbon atoms that have combined with each other
- An inorganic compound is a compound with no combination of carbon atoms

The Four Types of Organic Compounds (The Molecules of Life)

- Carbohydrates: Sugars used for short term energy
- Lipids: Fats and oils used for long term energy
- Proteins: Made up of amino acids; used for construction materials and chemical reactions in the body
 - Enzymes: Special types of proteins that speed up chemical reactions in the body but are not changed by the reactions
- Nucleic acids: DNA and RNA; contains genetic information

Cells

- A cell is the smallest unit that is alive and can carry on all the processes of life
- Cells make up organisms (living things)
 - Unicellular organisms are made up of 1 cell
 - Multicellular organisms are made up of many cells
- Cells contain organelles, which are specialized compartments that carry out a specific function
- Types of cells
 - Eukaryotic cells contain a nucleus, such as animal and plant cells
 - o Prokaryotic cells contain no nucleus, such as bacteria

Animal Cells

- Usually round
- Organelles include
 - nucleus: controls cell activities
 - o cell membrane: controls what enters and leaves the cell and also protects the cell
 - endoplasmic reticulum (ER): tunnels for compounds to move through the cell
 - o Golgi body: processes and stores protein
 - Ribosomes: make proteins
 - Mitochondria: Makes energy for the cell
 - Lysosome: Has enzymes that digest waste and old organelles
 - Cytoplasm: Fills the empty space of the cell
 - Vacuole: Stores food, water, and waste
 - Centrioles: Help in cell division and is only found in animal, not plant, cells

Plant Cells

- Usually square
- Organelles include
 - Everything that an animal cell has plus more
 - \circ Chloroplast: Traps sunlight to make food for the plant
 - Cell wall: Protects the cell

Bacterial cells

- Smaller and simpler than plant or animal cells
- Bacteria are unicellular
- No nucleus
- Have a single closed loop of DNA, cell wall, cell membrane, cytoplasm and ribosomes
- Some have a capsule (shell for protection), pili (short hair like structures to hold onto host cells), and flagella (whip like structure for movement)

Cell membrane

- Made up of molecules called phospholipids
- Phospholipid bilayer is the 2 layers of phospholipids that make up the cell membrane
- Cell membrane is fluid, which means that it is constantly flowing and moving over the cell
- Cell membrane is selectively permeable, which means that it allows small compounds, but not large ones, to pass right through
- There are different ways that materials are transported across the cell membrane
 - Passive transport: requires no energy
 - Diffusion: compounds move from high to low concentration
 - Osmosis: diffusion of water
 - Active transport: requires energy
 - Endocytosis: large compound are brought into the cell
 - Exocytosis: large compounds are exported out of the cell
- Types of solutions
 - Hypotonic solutions cause water to move into the cell so the cell swells up
 - Hypertonic solutions cause water to move out of the cell so the cell shrivels up
 - o Isotonic solutions cause no net movement of water into or out of the cell

Photosynthesis

- Process by which organisms use energy from sunlight to make their own food (glucose)
- Glucose is a simple sugar
- Photosynthesis occurs in the chloroplasts of plant cells and some bacteria
- Chloroplasts have a green pigment called chlorophyll
- Steps of photosynthesis
 - 0 1. Light reaction: chlorophyll in the chloroplasts absorbs sunlight
 - 2. Dark reaction: The energy from the sunlight is used to make glucose
- Light energy is completely changed into chemical energy (glucose)
- Chemical equation for photosynthesis

$$6CO_2 + 6H_2O + light energy \rightarrow C_6H_{12}O_6 + O_2$$

Cellular Respiration

- Process that breaks down glucose in order to make energy for an organism
- ATP: compound that stores energy in an organism
- Occurs in the mitochondria of the cell
- Two types of cellular respiration
 - Aerobic respiration: requires oxygen to occur
 - Mostly happens in animals and plants

- There are 3 steps in aerobic respiration
 - Step 1 is glycolysis: glucose is cut in half
 - Step 2 is the citric acid cycle: glucose halves get electrons chopped off of them
 - Step 3 is the electron transport chain: electrons combine with oxygen and are used to make a lot of ATP
- Chemical equation for respiration

 $C_6H_{12}O_6 + O_2 \rightarrow 6CO_2 + 6H_2O + ATP energy$

- Aerobic respiration is the opposite of photosynthesis
- Anaerobic respiration: does not require oxygen to occur
 - Mostly happens in bacteria and yeast
 - Also called fermentation
 - Makes less ATP than aerobic respiration

Chromosomes

- DNA strands in the nucleus that contain the directions on how to make and keep an organism alive
- Made up of genes, which are traits of an organism
- Cells will die if their DNA is damaged or removed
- Humans have mostly diploid cells, which means that we have 2 of each type of chromosome
 - Homologous chromosomes are 2 of the same type of chromosome
 - We have 23 types of chromosomes but...
 - We have 46 chromosomes in all,
 - 23 chromosomes from mom + 23 chromosomes from dad
- Human gametes (sperm and egg cells) are haploid cells, which means that they have 1 of each type of chromosome
 - Sperm and egg cells have 23 chromosomes in all
- Autosomes: Chromosomes that do not determine gender
- Sex chromosomes: Chromosomes that determine gender
 - Girls are XX, Boys are XY
- Karyotype: ordered picture of an organism's chromosomes
 - o Healthy individuals have 2 of each type of chromosome
 - Individuals with Down Syndrome have three #21 chromosomes

Cell Cycle

- The cell cycle is the phases in the life of a cell
 - o 1. M phase: Mitosis (cell division) occurs
 - o 2. G1 phase: Cell grows
 - o 3. S phase: DNA synthesis (chromosomes are copied)
 - o 4. G2 phase: Cell grows
 - o 5. M phase begins again
- Chromosomes must be copied before mitosis so that new cells receive the same chromosomes found in the old cells

Mitosis

- Division of a cell into 2 identical cells
- Before mitosis: Chromosomes have copied themselves
 - > Sister chromatids: original chromosome and its exact copy are attached to each other

• Phases of mitosis

- o 1. Prophase: Nuclear membrane falls apart and spindle fibers start to form
- o 2. Metaphase: Sister chromatids line up along the middle of the spindle fibers
- o 3. Anaphase: Sister chromatids separate and move to opposite ends of the cell
- o 4. Telophase: Spindle fibers break down and new nuclear membrane forms around each set of chromosomes
 - > Cytokinesis occurs when the cytoplasm actually divides, forming two new cells

Genetics

Meiosis

- Cell division that produces gametes (sex cells), such as sperm and egg cells
- Fertilization: Process of an egg and a sperm cell combining to produce a zygote
 - o Zygote: Baby that is only 1 cell big
 - o Egg cell (23 chromosomes) + sperm cell (23 chromosomes) = baby (46 chromosomes)
- Steps in meiosis
 - o 1. Before meiosis:
 - > 2 chromosomes of the same type come together to make a chromosome pair
 - Each chromosome doubles
 - > This gives 4 chromosomes stuck together
 - o 2. Meiosis I: Chromosome pairs separate into two new cells
 - o 3. Meiosis II: Each chromosome separates from its copy into 4 new cells
- In meiosis, one cell becomes four cells but in mitosis, one cell becomes two cells

DNA

- Deoxyribonucleic acid
- Makes up the chromosomes in the nucleus and never leaves the nucleus
- A chromosome is a chain of different genes
- DNA has a double helix shape
- Has four types of bases: adenine (A), guanine (G), thymine (T), cytosine (C)
- A binds T and G binds C
- DNA is complementary, which means that the bases on one strand match up to the bases on the other strand
 - o For example: Strand 1: ATG CCT GAC

Strand 2: TAC GGA CTG

• Semi conservative replication is the process by which DNA copies itself and each new piece of DNA is made up of 1 old strand and 1 new strand

RNA

- Ribonucleic acid
- RNA is a copy of DNA that goes out into the cytoplasm to tell the cell what to do in order to stay alive
- RNA is single stranded and has uracil (U) rather than thymine (T)
 - o U binds A and G binds C
 - o If the DNA is ATG CCA AAG Then the RNA will be UAC GGU UUC

Using DNA to make protein

- 1. Transcription: DNA in the nucleus is used to make messenger RNA (mRNA)
 o DNA has all the directions the cell needs to live
- 2. RNA moves out into the cytoplasm
 - o RNA carries the directions to other parts of the cell
- 3. Translation: The RNA attaches to a ribosome and directs the production of a protein
 - o Proteins do all the work in the cell
 - o Every 3 bases in RNA is called a codon and codes for 1 amino acid

Mutations

- A mutation is a change in a gene or chromosome
- If the mutation happens in a body cell, it only affects the organism that carries it
- If the mutation happens in a sex cell, it can be passed on to offspring
- Mutations can be
 - o harmful if they reduce an organism's chances for reproduction or survival
 - o helpful if they improve an organism's chances for survival
 - o neutral if they do not produce an obvious changes in an organism
 - o lethal if they result in the immediate death of an organism
- Mutations can occur spontaneously or be caused by a mutagen, which is a factor in the environment like UV and chemicals

Mendelian Genetics

- Gregor Mendel is an Austrian monk credited with beginning the study of genetics
- Genetics is the study of heredity
- Humans have 2 genes for every trait
 Alleles: Different forms of a single trait, like blue and brown are two eye color alleles
- Dominant gene: "Stronger" of 2 genes and shows up in the organism
 - o Represented by a capital letter
 - o B is the dominant gene for brown eyes
- Recessive gene: "Weaker" of 2 genes and only shows up when there is no dominant gene present
 - o Represented by a lowercase letter
 - o b is the recessive gene for blue eyes
- Homozygous (purebred): When 2 genes are alike for a trait
 - o BB is homozygous for brown eyes, bb is homozygous for blue eyes
- Heterozygous (hybrid): When 2 genes are different for a trait
 - o Bb is heterozygous
- Mendel's law of segregation states that the 2 genes we have for each trait get separated from one another when we make egg and sperm cells
- Mendel's law of independent assortment states that the gene for one trait is inherited independently of the genes for other traits
 - o Only true when the genes are on different chromosomes

Punnett Squares

• Punnett squares are charts that are used to show the possible gene combinations in a cross between 2 organisms

* Let's say that B is the dominant gene for brown eyes and b is the recessive gene for blue eyes*

- Genotype: The genes of an organism (Bb)
- Phenotype: The physical appearance of an organism (Brown eyes)

	Parents Bb x bb		Offspring genotype 50% Bb 50% bb	Parents Bb x Bb			Offspring genotype 25% BB 50% Bb
	В	b			В	b	25% bb
b	Bb	bb	Offspring phenotype 50% Brown eyes 50% blue eyes	В	BB	Bb	Offspring phenotype
b	Bb	bb		b	Bb	bb	75% Brown eyes 25% blue eyes

Human Genetics

- Multiple alleles are three or more alleles that exist for a single gene
 - o For example, A, B, and O are the multiple alleles for blood type
 - o The possible blood types are A, B, AB, and O
 - You can be A+ or A-, B+ or B-, AB+ or AB-, O+ or O- depending on whether your blood cells have a special Rh protein
- Codominance occurs when 2 dominant genes are expressed and both genes are seen in the organism
 - o AB blood is codominant, a cat with black and white spots is codominant
- Incomplete dominance occurs when 2 dominant genes are expressed and blended together in the organism
 - o If the red flower color gene (R) is mixed with the white flower color gene (W) then the offspring will be pink (RW)
- A polygenic trait is a trait that is controlled by more than one pair of genes, like skin color
- A sex-linked trait is a trait that is found on the X chromosome, such as colorblindness
 - o Females are XX so have 2 copies of sex-linked traits
 - o Males are XY so have 1 copy of sex-linked traits

Ecology

Ecology

- Ecology is the study of how organisms fit into their environment
- A community is the organisms that live in a particular environment
- A habitat is the physical location of a community
- An ecosystem is a collection of organisms and their physical environment
- The diversity of an ecosystem is a measure of the number of species living there
- There are different feeding groups of organisms
 - o Autotrophs: Organisms that make their own food, like plants and some bacteria
 - o Heterotrophs: Organisms that cannot make their own food, like
 - ➢ Herbivores: Eat plants
 - Carnivores: Eat meat
 - > Omnivores: Eat plants and meat

- There are different factors is an ecosystem
 - o Abiotic factors are nonliving things
 - o Biotic factors are living things, such as
 - Producers: Organisms that take in energy from their surroundings to make their own food
 - Consumers: Organisms that eat other organisms for energy
 - Decomposers: Special type of consumer that eats waste products and dead organisms for energy
- There are different trophic levels in a food chain
 - o A trophic level is a feeding level in an ecosystem
 - o A food chain is a lineup of organisms that shows the direction of energy flow (you can also determine what eats what)
 - o 1st trophic level is usually a producer
 - o 2nd trophic level is a primary consumer
 - o 3rd trophic level is a secondary consumer
 - o 4th trophic level is a tertiary consumer
 - o and so on
 - o Last trophic level is a decomposer
- Every time an organism eats, it obtains energy from its food
 - o So energy is transferred from the 1st to the 2nd to the 3rd trophic level and so on (but some of this energy does get lost along the way)
 - o Energy pyramid: Picture showing how much energy is transferred to the different trophic levels in a food chain
- A food web is a network of connected food chains

Cycles of Matter

- Water, nitrogen, carbon, and oxygen are recycled in the environment through cycles
- The nitrogen cycle
 - o Nitrogen in the atmosphere is taken in by bacteria that live in plant roots
 - o The nitrogen is passed onto the plants and any animals that eat the plants
 - o Once the plant or animal has died, decomposers (bacteria) again take up the nitrogen in the dead material and send it back to the atmosphere
- The water cycle
 - o Precipitation, such as rain and snow, fall to the earth
 - o The water either
 - seeps into the ground for plants to use and the plants give off excess water back to the atmosphere
 - or runs off the land to lower-lying bodies of water where it evaporates back into the atmosphere
- The oxygen-carbon cycle
 - o Carbon dioxide from the atmosphere is taken in by plants who use it during photosynthesis and release oxygen back into the atmosphere
 - o Oxygen in the atmosphere is taken in by animals and plants who use it during respiration and release carbon dioxide back into the atmosphere

Interaction in an environment

- Each organism has a niche, or role, to play in its environment
- Competition is a struggle between organisms for resources, such as food, water, shelter
- Predators are organisms that catch, kill, and eat other organisms called prey
- Symbiosis is a close relationship between 2 organisms in which one organism lives near, on, or even inside another organisms and in which at least one organism benefits

- o There are three types of symbiosis
- o 1. Commensalism is when one of the 2 organisms benefits from the symbiosis
- o 2. Mutualism is when both organisms benefit from the symbiosis
- o 3. Parasitism is when one organism benefits (parasite) and the other organism is harmed (host) from the symbiosis
 - > The parasite feeds on the host while it is still alive, weakening but not killing it
- An adaptation is a change in the behavior or physical characteristics of a species that make it better suited to its environment
- Populations of organisms increase and decrease due to overpopulation of a competitor or predator, disease, lack of food or water or shelter, and extreme weather
- Ecosystems are constantly changing due to changing populations of organisms, changing weather, natural disasters, and human activity
- Every time a change occurs, the balance of the ecosystem has to be readjusted

The Theory of Evolution

Evolution

- Evolution is a change in a species over time
- The theory of evolution was stated by Charles Darwin and is based on natural selection
- Natural selection states that organisms with traits well suited to an environment are more likely to survive and produce more offspring than organisms without these favorable traits
- Biodiversity: Organisms become very different from each other as they evolve and become better suited to their environments
- The theory of evolution is supported by evidence that includes
 - o Adaptations: structures and behaviors that organisms have evolved in order to survive better in their environments
 - o The fossil record which is information about all known fossils
 - o Comparative anatomy which is when the bodies of different organisms are compared to see if they are related
 - > Homologous structures are body structures on different organisms that are similar
 - Vestigial structures are body structures that may have served a purpose in ancient ancestors but no longer are functional in current organisms
 - o The fact that all vertebrate embryos look very similar as they develop before birth
 - o The fact that the DNA of closely related organisms looks very similar

Taxonomy

- Taxonomy is the science of classifying and naming living things
- Organisms are organized into 7 different levels of taxonomy (King Philip Came Over From Great Spain)
 - o 1. Kingdom most broad
 - o 2. Phylum
 - o 3. Class

- o 5. Family
- o 6. Genus
- o 7. Species most specific

- o 4. Order
- Closely related organisms have more levels of taxonomy in common than unrelated organisms

- There are six kingdoms of living things (Archie eats pretty fantastic apple pies)
 - o 1. Archaebacteria: bacteria that live in extreme environments
 - o 2. Eubacteria: common bacteria
 - o 3. Protista: Single-celled eukaryotes
- o 4. Fungi: Mushrooms, yeasts, molds
- o 5. Animalia: multicelled heterotrophs
- o 6. Plantae: multicelled autotrophs
- Every organism has a unique two-word scientific name that is written in Latin
 - o The first word is the genus, the second word is the species (Humans are *Homo sapiens*)
- Some scientists prefer to organize organisms into domains rather than kingdoms
 - o There are three domains (Archie eats eels)
 - o 1. Archaea: Bacteria that live in extreme environments
 - o 2. Eubacteria: Common bacteria
 - o 3. Eukarya: Organisms whose DNA is in a nucleus

Biology EOCT Study Guide

1. What is a compound?

- 2. What is the difference b/w organic and inorganic compounds?
- 3. What are the 4 major organic compounds found in all living things?

	-									
	<u>Compound</u> a.	Example(s)	Made up of	Main Functions						
	b.									
	c. d.									
5.	What type of organic compound are enzymes?									
6.	Why are enzymes important?									
7.	Define cell.									
8.	8. What is the difference b/w unicellular and multicellular?									
9.	9. Define organelle.									
10. What is the diff. b/w prokaryotes and eukaryotes?										
11. What are the major functions of the following organelles:										
	a. nucleus	e. lysoso	me	i. Golgi body						
	b. mitochondrion	f. ribosc	me	j. cell membrane						
	c. chloroplast		lasmic reticulum	k. cyoplasm						
	d. centriole	h. vacuo	le	l. cytoskeleton						
12. List 3 major differences b/w an animal cell and a plant cell.										
13. List 4 differences b/w bacteria and other organisms.										
14. What is the cell membrane made of?										
15	15. Define phospholipid bilayer.									
1.0										

- 16. What does it mean to say the cell membrane is selectively permeable?
- 17. What are the 2 general types of membrane transport?
- 18. What is the diff. b/w the 2 types of transport?
- 19. Define diffusion. What type of transport is it?
- 20. Define osmosis. What type of transport?

- 21. Define endocytosis and exocytosis. What type of transport?
- 22. What are the 3 types of osmotic solutions and what is the diff. b/w them?
- 23. Write the chemical equation for photosynthesis.

(Write/Color oxygen organge, light yellow, carbon dioxide green, water blue, glucose black, and ATP red)

- 24. Write the chem equation for cell respiration.
- 25. Where in the cell does photosynthesis occur?
- 26. Where in the cell does cell respiration occur?
- 27. What types of organisms carry out photosynthesis?
- 28. What is ATP?
- 29. What are the 2 types of cell respiration and how are they different?
- 30. What types of organisms carry out aerobic resp?
- 31. What types of organisms carry out anaerobic resp?
- 32. Explain the process of aerobic resp.
- 33. Another word for anaerobic resp is ______.
- 34. Which process makes more ATP....aerobic or anaerobic?
- 35. Define chromosome.
- 36. Chromosomes are made up of _____, which are made up of DNA.
- 37. Define diploid and haploid.
- 38. What are homologous chromosomes?
- 39. What are the human diploid and haploid numbers?
- 40. What are gametes?
- 41. What is the diff. b/w autosomes and sex chromosomes?
- 42. A male's sex chromosomes are _____ and a female's are _____.
- 43. What is a karyotype?
- 44. What are the phases of the cell cycle?

- 45. What happens in each phase of the cell cycle?
- 46. Why does the DNA need to be copied BEFORE mitosis occurs?
- 47. What is the end result of mitosis?
- 48. List the phases of mitosis and explain what the chromosomes are doing in each phase.
- 49. What is cytokinesis?
- 50. What is the main diff. b/w mitosis and meiosis?
- 51. Define fertilization.
- 52. Define zygote.
- 53. Explain what happens to the chromosomes before meiosis, during Meiosis I and during Meiosis II.
- 54. What is the end result of meiosis?
- 55. What is DNA?
- 56. Where do you find DNA in eukaryotic cells? Where in prokaryotic cells?
- 57. What shape does DNA have?
- 58. What are the rules of base-pairing?
- 59. What does it mean to say that DNA replication is a semiconservative process?
- 60. What are 3 differences b/w DNA and RNA?
- 61. Describe how DNA and RNA are used to make a protein.
- 62. Why is it worse to have a mutation in a sex cell than in a somatic cell?
- 63. How can mutations be harmful?
- 64. How can mutations be helpful?
- 65. How can mutations not affect the organism?
- 66. How can mutations be deadly?
- 67. Define mutagen and give 2 examples.
- 68. Who is the father of genetics?

- 69. What are alleles?
- 70. What is the diff. b/w dominant and recessive alleles?
- 71. Give 2 examples of a homozygous genotype.
- 72. Give an example of a heterozygous genotype.
- 73. What's the diff. b/w Mendel's laws of segregation and independent assortment?
- 74. What's the diff. b/w genotype and phenotype? Give an example of each.
- 75. ______ is when 2 dominant alleles are expressed and the phenotype is blended.
- 76. is when there are 3 or more alleles for a gene.
- 77. ______ is when a trait is controlled by more than one gene.
- 78. _____ are found only on sex chromosomes.
- 79. ______ is when 3 dominant alleles are expressed and both variations of the trait can be seen.
- 80. Give an example of: a. multiple alleles b. polygenic traits c. sex-linked traits
- 81. What is the diff. b/w a population and a community?
- 82. How is a habitat diff. from a niche?
- 83. List the levels of ecology from simplest to most complex.
- 84. What is biodiversity and why is it important in an ecosystem?
- 85. What is the diff. b/w autotrophs and heterotrophs?
- 86. Give 3 examples of abiotic factors.
- 87. Give 3 examples of biotic factors.
- 88. Define trophic level.
- 89. What trophic level do producers usually fall into?
- 90. What level do tertiary consumers fall into?
- 91. What is always at the top of a food chain/web?
- 92. What does an energy pyramid show?
- 93. What happens to energy as it is transferred through a food chain/web?

- 94. What major elements are cycled throughout the ecosystem?
- 95. What are the major organisms involved in the nitrogen cycle?
- 96. What 2 kingdoms are most involved in the oxygen-carbon dioxide cycle?
- 97. What type of symbiosis does each of these represent....
 - a. +/b. +/0 c. +/+
- 98. What is the diff. b/w a parasite and a predator?
- 99. Define adaptation.
- 100. What 5 factors can cause populations to increase/decrease?
- 101. What is the main diff. b/w primary and secondary succession?
- 102. Define evolution.
- 103. Who developed the theory of evolution by natural selection?
- 104. What is natural selection?
- 105. What is another (more common) way to define natural selection?
- 106. Explain the 5 pieces of evidence that supports evolution.
- 107. Define taxonomy.
- 108. List the 7 taxa in order from most specific to most broad.
- 109. Circle the 2 that are most closely related: *Quercus alba Tyto alba Quercus phellos Freesia alba*
- 110. What is the main diff. b/w the 2 Domains/Kingdoms of bacteria?
- 111. What are the 3 Domains and how are they distinguished?
- 112. What are the 3 rules of binomial nomenclature (naming organisms)?
- 113. List the steps of the scientific method.
- 114. What is the diff. b/w a dependent and an independent variable?
- 115. What is the diff. b/w a control and a constant in an experiment?