Chapter 14 Heat and Temperature Notes

Te	emperature		
•	Related to the of an object's ator	ns or molecules	
	\circ The degree of "" or "" or "" of an object		
•	What makes something hot?		
	 Particles that make up 		
	• They have		
	 When you heat something the 		
•	What kind of energy does temperature measure?		
	57 1		•2015a
Kir	netic Energy		
•	transferred as		Mark and
•	no matter what state they are		1 2 4
	Kinetic Energy Temperature Kinetic Energy	Temperature	
Me	easuring Temperature		
•	Metals when heated		
•	Different metals		
Lin	mits on Temperature		
•	Upper Limit		
	<u></u> .		
	 Plasma found in = millions of degrees C 		
•	Lower Limit		
	 Definite limit called 		
	• will slow down SO much they will		
	• Out of so they act any colder		
	gov any <u></u> , ee may <u></u> gov any eelas		
Te	emperature Scales		
•	Three different scales:		
	1. Fahrenheit-		
	2. Celsius- standard		
	3. Kelvin- starts at but same degree size as Celsius		
•	In the US we know at <u>water freezes and</u> water boils.		
Me	easuring Temperature		
•	The absolute temperature scale is called the	0 0	
•	Absolute zero is		
•	The melting point of ice is, and the boiling point of water is		
	373 K.		
•	There are numbers on the Kelvin scale.		
			/ 🦊

<u>Heat</u>

- Heat is the ______ transferred from one thing to another
 due ______
- Heat always flows from _____ to _____ objects.
- Temperature tells you _____ of _______
 Faster molecules (________) hit slower molecules (________) and _________

<u>Specific Heat</u>

- The amount of energy required to change the temperature of substance.
- Identifies type of conductor.
- Heat capacity depends on:
 - Temperature of object
 - Mass of object
 - Type of object
- Substance with high specific heat, require a lot of energy.
- Different materials have specific heat capacities.
 - Some substances change temperature more easily than others
 - Water has a high specific heat of 4186 J/kg K
 - Metals have a low specific heat

• _____ of Energy= slow ______ in

• _____ of Energy = _____ increase in temperature.

• Land heats up and cools down faster than water! Why?

<u>Specific Heat Formula</u>

- Energy = mass x change in temp x Specific heat
- $Q = m \times \Delta T \times C$
 - **Q**
 - **M**
 - ΔT
 - **C**

As mass, Temperature, or specific heat_____, the energy required also ______

- As mass, Temperature, or specific heat _____, the energy required also ______
- Why does gold heat up fast than aluminum?
- Does aluminum or water heat up faster? Why

Answer the following questions using the chart on the right.

- 1. Which material on the specific heat chart heats up the fastest?
- 2. Which material on the specific heat chart heats up the slowest?
- 3. Which material needs the most amount of energy to raise its temperature?
- 4. In set below, circle the 3 materials that would heat up the fastest?

Water Iron Copper Ice Basalt Granite Lead Water Iron

5. Compare the heating and cooling rate of land and water, using the terms "specific heat" to explain your comparison

Specific Heats of Common Materials

MATERIAL	SPECIFIC HEAT (Joules/gram • °C)
Liquid water	4.18
Solid water (ice)	2.11
Water vapor	2.00
Dry air	1.01
Basalt	0.84
Granite	0.79
Iron	0.45
Copper	0.38
Lead	0.13

Heat can be transferred 3 different ways						
Туре	Details	Picture				
1.	 Transferred of energy by					
	 materials that allow heat to pass through them Ex. 					
	 materials that don't let heat pass through them well Ex. 					
2.	•Transferring by • and are fluids •When heated they, become less •They, replaced by fluids •Make a circular flow called a					
3.	•Energy transferred by •Ex: infrared radiation,, ultraviolet rays •Can travel through •When wave hit object they make					

<u>Thermodynamics</u>

- _____ increases average _____
- _____ is the process in which energy is transferred by work

First Law of Thermodynamics

Second Law of Thermodynamics

- Energy transfers as ______ always moves from a ______.

Temperature vs. Time Graph

•	Adding energy	or	, not both at the same time.	
Enonov	and Chances of State			
<u>Energy</u>	Theof a			
•	state The ability to change or _ As you goes up s goes up s Some changes of state	during a change i to a liquid, the separating molecules 	in Gas Cas Cas Cas Cas Cas Cas Cas Cas Cas C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Evapora				
•	The change of state from a			
•	The	temperature at which a lig	quid boils.	مام
•	The temp in the room is about	and .	ius scale and on the Panrennett sc	uie.
•	Are the following temperatures	hot or cold?		
	– 65°F, 65°C, 27°F, 2	27°C, 0°F, 0°C, 100	0°F, 100°C	
Sublima	tion			
•	The process in which ach	nanges into a _		
	– Ex(Carbo	n dioxide in the solid form	n) changes directly from a solid to a gas	
<u>Melting</u>	Point			
•	The temperature at which a	fro	om	
•	Melting point depends on the _	·		
• Ene	ergy is released in some changes	of state		
	and			

– _____ and __

Fill in the following chart:

• Please sketch the following into your notes

<u>Temperature</u>

•

- nperature The temperature of a ______ during a change of state. For example, if you _____ to ice at 0°C, the temperature will _____rise until all of the
 - When energy is added _____.
 - When energy is removed _____.