

Magnets

More than 3,000 years ago Greeks discovered deposits of a mineral that was a natural magnet.

The mineral is now called magnetite.

Ex: lodestone

These magnets were used by the ancient peoples as compasses to guide sailing vessels.

Magnets

<u>Magnet</u> – any material that attracts iron and materials that contain iron

 Magnetism – the attraction or repulsion of magnetic materials

- Magnets attract or repel other magnets.
- Today, the word magnetism refers to the properties and interactions of magnets.

Common metals affected by magnetism are <u>iron, nickel, and cobalt</u>

IRON

NICKEL

Magnets

• Nonmagnetic materials, such as plastic, glass and wood, have electrons that flow in different directions.

Magnets

- All magnets have a north pole and a south pole.
- Every magnet has two poles
 - north (N) pole
 - south (S) pole

magnetic force – the attraction or repulsion between magnetic poles

Magnetic Poles

Poles- two ends of a magnet

 Even if you break a magnet in half, each half will have a north pole and a south pole

No Monopoles Allowed

It is not possible to end up with a single North pole or a single South pole, which is a monopole ("mono" means one or single, thus one pole).

Magnetic Fields

- A magnet is surrounded by a magnetic field.
- A <u>magnetic field</u> exerts a force on other magnets and objects made of magnetic materials.
- The <u>magnetic field</u> is strongest close to the magnet and weaker far away.

A magnetic field also has a direction & illustrated by arrows.

Earth as a Magnet

- Earth has north and south poles like a bar magnet
- Our planet's rotation causes molten iron-nickel in its outer core to circulate
- creating electrical currents and a magnetic field.

The Earth is surrounded by a magnetic field which extends far into space. Called the magnetosphere

Earth as a Magnet

Magnetic poles of the Earth are different from the geographic poles of

- the Earth
- the North Magnetic Pole is located near the geographic South Pole
- the South Magnetic Pole is located near the geographic North Pole

Earth's Magnetic Poles

• Earth's magnetic poles move slowly with time.

Sometimes Earth's magnetic poles switch places so that Earth's south magnetic pole is the southern hemisphere near the geographic south pole.

leo

Compasses

- Compasses are used to determine direction
- Compass needles are magnetized and respond to the magnetic field of the Earth
- ► We use the Earth's magnetic field to find direction.
- Migration of birds
- The needle of a compass always points toward the magnetic south pole.
- The compass needle points toward the geographic "North"

Magnetic Effects

- The most visible effect of the earths magnetic field is a colorful light display, called an aurora
- Collisions between the charged particles and other particles in the upper atmosphere create glowing lights

Electromagnetism

 In 1820, Han Christian Oersted, a Danish physics teacher, found that electricity and magnetism are related.

- Oersted hypothesized:
 - Electric current must produce a magnetic field around the wire, and the direction of the field changes with the direction of the current.
- <u>Electromagnetism</u> relationship between electricity and magnetism

Electromagnetism

When an electric current is passed through a coil of wire wrapped around a metal core, a very strong magnetic field is produced. This is called an <u>electromagnet.</u>

The strength depends on the number of turns in the coil, the amount of current, and the size of the iron core.

Classroom electromagnet vs. commercial electromagnet

Electromagnetism

The magnetic field inside the solenoid with the iron core can be more than 1,000 times greater than the field inside the solenoid without the iron core.

Electromagnetism

Properties of Electromagnets

- Electromagnets are temporary magnets because the magnetic field is present only when current is flowing in the solenoid.
- The strength of the magnetic field increases:
 - by adding more turns of wire to the solenoid
 - by increasing the current passing through the wire.

Properties of Electromagnets

- Electromagnet has a north pole and a south pole.
- An electromagnet also will attract magnetic materials and be attracted or repelled by other magnets.

Electromagnetism

- When an electric current passes through a wire a magnetic field is formed.
- The magnetic field depends on the direction of the current in the wire.

Electromagnetism

• The direction of the magnetic field around the wire <u>reverses</u> when the direction of the current in the wire reverses.

Electromagnetic Devices

Electric Motors

- <u>Electric Motor</u> device that changes electrical energy into mechanical energy
- An electric motor is made up of an electromagnet and a permanent magnet

Electric Motors

- A fan uses an electric motor
- The motor in a fan turns the fan blades, moving air past your skin to make you feel cooler.
- Almost every appliance in which something moves contains an electric motor.

Electromagnetic Induction

The process of inducing a current by moving a magnetic field through a wire coil without touching it.

Electromagnetic Induction

Generators

- <u>electric generator</u> a device that converts mechanical energy into electrical energy
- A generator uses motion in a magnetic field to produce an electric current

How a Generator Works

- a current can be induced in a loop of wire by spinning the loop inside a magnetic field
- due to the changing direction of the wire, an <u>alternating</u> <u>current</u> is produced

Electromagnetic Induction

Using Electric Generators

- The type of generator in a car, is called an alternator.
- The alternator provides electrical energy to operate lights and other accessories.

Electromagnetic Induction

- Electrical energy comes from a power plant with huge generators.
- Produces the electrical energy that you use in your home.
- The coils in these generators have many coils of wire wrapped around huge iron cores.

Electromagnetic Induction

ero currer

 The rotating magnets are connected to a turbine (TUR bine)—a large wheel that rotates when pushed by water, wind, or steam.

• Thermal energy is then converted to mechanical energy as the steam pushes the turbine blades.

Transformers

• This figure shows how step-up and step-down transformers are used in transmitting electrical energy from power plants to your home.

