## Chapter 3 <br> Gas Laws and States of Matter

Physical Science
$\square$ Kinetic Theory

## 3 Parts

1. All matter is made of tiny particles.
2. These tiny particles are always in motion.

1The higher the temperature, the faster the particles move.
3. At the same temperature, more massive (heavier) particles move slower


- Kinetic Molecular Theory:
- This motion is different for the 4 states of matter.





## States of Matter

Microscopic view of matter
When a substance changes from one phase of matter to another, the identity of the substance does NOT change.

- Water freezes to a solid and melts to a liquid, but it is still just water.



## States of Matter

## SOLIDS



- Solids have a definite shape and volume
-The particles are held closely together by strong attractions
-Packed close together
-Vibrate in place.
-Don't flow




## States of Matter

## LIQUIDS Charactersistis of fliuuids

1. Has a definite volume but no definite shape.

- Volume remains the same, but shape changes.

2. Take shape of container.
3. Particles are held close together but can flow freely.
4. The particles in a liquid move much faster than in a solid.

- This allows the particles of a liquid to temporarily overcome the attractive forces between them.


-These particles are approximately 10 times farther apart than those of a liquid or solid.


## Characteristics of Gases




## PHYSICAL PROPERTIES

## DENSITY

- Density is the mass per unit volume of a substance. -Tells us how light or heavy something is.


> Liquid Layers
> Try on your own!


Imagine that the liquids on the right have the following densities:
$-15 \mathrm{~g} / \mathrm{cm}^{3} \quad 10 \mathrm{~g} / \mathrm{cm}^{3}$
$-3 \mathrm{~g} / \mathrm{cm}^{3} \quad 9 \mathrm{~g} / \mathrm{cm}^{3}$ $-7 \mathrm{~g} / \mathrm{cm}^{3} \quad 12 \mathrm{~g} / \mathrm{cm}^{3}$
Match the colors to the correct densities.



## DENSITY IS DIFFERENT FROM WEIGHT

If you take the same volume of different substances, then they will weigh different amounts

Q) Which has the greatest mass and therefore the most dense?

## WHAT IS THE DENSITY OF WATER?

## Density Table

| SUBSTANCE | $\text { DENSITY ( G/CM }{ }^{3}$ | SINK or FLOAT <br> In Water ( $\mathrm{D}=1.0$ <br> $\mathrm{g} / \mathrm{mL}$ ) |
| :---: | :---: | :---: |
| AIR | 0.0013 | Float |
| WOOD (OAK) | 0.85 | Float |
| WATER | 1.00 |  |
| ICE | 0.93 | Float |
| ALUMINUM | 2.7 | Sin |
| LEAD | 11.3 | Sink |
| GOLD | 19.3 | Sink |
| ETHANOL ${ }^{\text {alcohol }}$ | 0.94 | Float |
| METHANOL (fuel) | 0.79 | Float |

## DETERMINING DENSITY

- Regular Shapes - mass, then determine the volume by formula


## ChLCULATE DENSITY

EX: cubes, cylinders, spheres, cones, etc.

- Irregular shapes - mass, then measure displacement of a liquid (usually water) by that irregularly shaped object

```
---------------------------------------
- Divide the mass of the object by the volume of the object
Density = MMass
Volume
SI units
- Density = g/mL or g/cm3
- Mass = g
1- Volume = mL or cm}\mp@subsup{}{}{3
-Water has a density of 1 g/mL
```

2. Add water to a predetermined level
    - record.
3. Gently drop in the irregularly
shaped object.
4. Read the graduated cylinder -
record.
4. Subtract the first water level from the second - this is the volume

How do you calculate volume?
Volume $=$ length x width x height


What is the volume?

## PRWGMTC M MOBDEINS M DEMETME

1. A small block of wood has a volume of $25 \mathrm{~cm}^{3}$ and a mass of 20 grams. What is the density of the block?

## $\mathrm{D}=$ ? <br> $\mathrm{M}=20$ grams $\mathrm{V}=25 \mathrm{~cm}^{3}$

Density $=\underline{\text { mass }}$ volum
2. A piece of tin has a mass of 16.52 g and a volume of $2.26 \mathrm{~cm}^{3}$ ? What is the density of tin?

```
D =?
M = 16.52 grams
V = 2.26 cm
```




Density $=7.31 \mathrm{~g} / \mathrm{cm}^{3}$

## PRHCTICE PHOBIENIS OI DENSTHY

3. A man has bottle completely filled with 163 g of a slimy, green liquid and a density of $3.26 \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume of the bottle?

| $\mathrm{D}=3.26 \mathrm{~g} / \mathrm{cm}^{3}$ | Volume $=\underline{\text { Mass }}$ | Volume $=\underline{163 \mathrm{~g}}$ | Volume $=50.0 \mathrm{~cm}^{3}$ |
| :--- | ---: | ---: | :--- |
| $\mathrm{M}=163 \mathrm{~g}$ | Density | $3.26 \mathrm{~g} / \mathrm{cm}^{3}$ |  |
| $\mathrm{~V}=?$ |  |  |  |

4. A piece of metal has a density of $11.3 \mathrm{~g} / \mathrm{cm}^{3}$ and a volume of $6.7 \mathrm{~cm}^{3}$. What is the mass of this piece of metal?
$\mathrm{D}=11.3 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{M}=?$
$\mathrm{~V}=6.7 \mathrm{~cm}^{3}$

Mass $=$ Density x Volume
Mass $=11.3 \mathrm{~g} / \mathrm{cm}^{3} \times 6.7 \mathrm{~cm}^{3}$
$\mathrm{V}=6.7 \mathrm{~cm}^{3}$ Mass $=76 \mathrm{~g}$

## Density: Buoyant Force

Density

- An object will float or sink based on its density.
- You can determine if a substance will float or sink by comparing densities.




## Let's try some density problems! Get a piece of paper.

5. Frank has a paper clip. It has a mass of 9 g and a volume of $\mathbf{3 c m}{ }^{\mathbf{3}}$. What is its density?
6. Frank also has an eraser. It has a mass of 3 g , and a volume of $1 \mathrm{~cm}^{3}$. What is its density?
7. Jack has a rock. The rock has a mass of $\mathbf{6 g}$ and a volume of $3 \mathrm{~cm}^{3}$. What is the density of the rock?
8. Jill has a gel pen. The gel pen has a mass of 8 g and a volume of $2 \mathrm{~cm}^{3}$. What is the density of the rock?



- Remember Gases are far apart and their particle are moving quickly
- The gas laws relate temperature, pressure, and volume to one another.
Boyle's Law (relates pressure to volume)
Gay-Lussac's Law (relates pressure to temperature)
Charles's Law (relates temperature to volume)




## Gases Laws

## Charles's Law

- For a gas at constant pressure, temperature and volume are directly proportional
- Pressure stays the same
- If the temperature increases, then the volume increases
- If the temperature decreases, then the volume decreases


Charles's Law


- If the volume of a gas is constant, temperature and pressure are directly proportional
- The volume of gas stays the same
- If the temperature increases then the pressure increases
- If the temperature decreases then the pressure decreases



## Gay-Lussac's Law

Footballs: Having one outside on a cold day deflates them.


## Think about this

The gas in the toy balloon expands outward, as shown below. After this expansion, does the pressure of the gas
a. increase?

## b. decrease?

c. remain unchanged?


Volume goes up Pressure goes down

The temperature of the water vapor in the pressure cooker increases. Does the pressure of the gas
a. increase?
o. decrease?
c. remain unchanged?


