

Kinetic theory

<u> Kinetic Theory</u>

3. At the same temperature, more massive (heavier) particles move slower

Energy's Role

- Temperature is the measure of average kinetic energy
- Particles of matter are constantly moving, but they are not moving at the same speed.
 - The more kinetic energy, the higher the temperature.

- Kinetic Molecular Theory:
 - This motion is different for the 4 states of matter.

• Act	ivity! Descri	ibing Solid-L	iquid-Gas	
	Solid	Liquid	Gas	Plasma
Volume	Easy to find – in ml or cm₃	Easy to find. Use graduated cylinder – ml	No definite volume	Stars, nebulas. No Volume ⊛
Shape	Many different forms. Easy to mold.	Takes shape of the container.	No definite Shape ®	No Shape ⊗
Mass	Generally Heavy / Weigh in grams Easy to find.	Generally Heavy / Weigh in grams.	Lighter in mass / Harder to weigh ⑧	Electron & proton mass. Hard to weigh
			Co	pyright © 2010 Ryan P. Murphy

A gas expands to fill any available space.

<u>Gases</u> can exert pressure on their container.

•These particles are approximately 10 times farther apart than those of a liquid or solid.

PHYSICAL PROPERTIES

DENSITY

• Density is the mass per unit volume of a substance. •Tells us how light or heavy something is.

Which is denser?

DENSITY IS DIFFERENT FROM WEIGHT

If you take the same volume of different substances, then they will weigh different amounts.

	• 1.0 g/mL
HOW CAN YOU OBJECT WILL	PREDICT WHETHER AN FLOAT OR SINK?
•By compa	ring densities!
TAM DIOR OTH	DENSITY BE USED?

• For example, aluminum always has a density of 2.55 g/ml.

Density Table SINK or FLOAT 3 In Water (D = 1.0 SUBSTANCE DENSITY (G/CM) g/mL) 0.0013 AIR WOOD (OAK) 0.85 1.00 WATER ICE 0.93 ALUMINUM 2.7 11.3 LEAD GOLD 19.3 Float ETHANOL(alcohol) 0.94 METHANOL (fuel) 0.79

PRACTICE PROBLEMS OF DENSITY

1. A small block of wood has a volume of 25 cm³ and a mass of 20 grams. What is the density of the block?

3. A man has bottle completely filled with 163 g of a slimy, green liquid and a density of 3.26 g/cm³. What is the volume of the bottle?

Let's try some density problems! Get a piece of paper.

- 5. Frank has a paper clip. It has a mass of 9g and a volume of 3cm³. What is its density?
- 6. Frank also has an eraser. It has a mass of 3g, and a volume of 1cm³. What is its density?
- 7. Jack has a rock. The rock has a mass of 6g and a volume of 3cm³. What is the density of the rock?
- 8. Jill has a gel pen. The gel pen has a mass of 8g and a volume of 2cm³. What is the density of the rock?

Vocabulary

- Pressure-amount of force exerted on an object
- Temperature-intensity of heat present

• Volume-amount of space a substance occupies

- Remember Gases are far apart and their
- pressure, and volume to one another.
- oyle's Law (relates pressure to volume)
- C'S Law (relates pressure to temperature)
- N (relates temperature to volume)

Gases Laws

Robert Boyle (1627-1691). Son of Earl of Cork, Ireland.

- For a gas at a constant temperature, pressure and volume are inversely proportional
- Temperature stays the same
- If the pressure decreases the volume increases
- If the pressure increases the volume decreases

Temperature is constant Volume Pressure **↑↓**

Gay-Lussac's Law

Footballs: Having one outside on a cold day deflates them.

Ping Pong Balls: Dip them in hot water to get rid of dents.

Tire pressure: The tires of your bike deflate in the cold.

Think about this.....

The gas in the toy balloon expands outward, as shown below. After this expansion, does the pressure of the gas

- a. increase? b)decrease?
- **c.** remain unchanged?

Volume goes up Pressure goes down

The temperature of the water vapor in the pressure cooker increases. Does the pressure of the gas a increase? b. decrease? c. remain unchanged? Temperature increase

Temperature increases Pressure increases