Section: 13.1
Work

- What is work?
- The product of the to an object and the \qquad through which that

- Work is \qquad when an \qquad is \qquad
- All or part of the \qquad must act in the \qquad of the \qquad .
- When an Olympic weight lifter presses a barbell over his head?
- When he has to hold it there until the judges say he can put it down?
- Do you do more work when you finish a job quickly?
- Energy is expressed in \qquad
- Energy can be expressed more specifically by using the term \qquad

Calculating Work

- Work= \qquad x \qquad
- $W=F \times d$
\qquad
- Unit for Work:

Units of work

| Force $=$ |
| :--- | :--- |
| Distance $=$ |
| Work $=\quad \times \quad(N \cdot m)$ |
| $N \cdot m=$ |

What is the formula when solving for force?
-

- What is Power?
-
- How \qquad work is done

- It Running up stairs is harder than walking up stairs
- Why? \qquad .
- Your \qquad would be greater than if you walked up the stairs.
- If two people mow two lawns of equal size and one does the job in half the time, who did more work?

Calculating Power

- Power is \qquad divided by \qquad
- Power =
- Units for power is \qquad
Power =
Work=
Time=

```
What is the formula when solving for time?
```


Practice Problem (Power)

1. A student lifts a 12 N textbook 1.5 m of the floor in 1.5 s .

How much work was done?
How much power was used?
2. A 43 N force is exerted through 2.0 m distance for 3.0 s .

How much work was done?
How much power was used?
3. While rowing across the lake during a race, John does $3,960 \mathrm{~J}$ of work on the oars in 60.0 s . What is his power output in watts?
4. Anna walks up the stairs on her way to class. She weighs 565 N , and the stairs go up 3.25 vertically.
a. If Anna climbs the stairs in 12.6 s , what is her power output?
b. What is her power output if she climbs the stairs in 10.5 s?

Machines

- A device that makes work \qquad
- A machine can change the \qquad the direction, or the distance over which a \qquad .
- They \qquad by using a small force to go a \qquad
- Things like \qquad levers, etc.

Mechanical Advantage

- Mechanical Advantage:
- How many times a machine multiplies the \qquad
- Mechanical advantage \qquad
- \qquad it multiplies distance,

Forces Involved:

Input Forces

Calculating Mechanical Advantage

- Mechanical Advantage $=$ \qquad MA = Force= Distance =
- Mechanical Advantage $=$ \qquad
Output Forces

Practice Problem (Mechanical Advantage)

1. Find the mechanical advantage of a ramp that is 6.0 m long and 1.5 m tall.
2. Alex pulls on the handle of a claw hammer with a force of 15 N . If the hammer has a mechanical advantage of 5.2 , how much force is exerted on the nail in the claw?
3. If an input force of 202 N is applied to the handles of the wheelbarrow with a mechanical advantage of 2.2. How large is the output force that just lifts the load?
4. Suppose you need to remove a nail from a board by using a claw hammer. What is the input distance for a claw hammer if the output distance is 2.0 cm and the mechanical advantage is 5.5 ?

Section: 13.2 Simple Machines

What is a Simple Machine?

-
- Make \qquad
- \qquad types

Simple Machines

1. Levers

- A bar that is free to pivot, or move about a fixed point when an input force is applied.
- \qquad $=$ the pivot point of a lever.
- 3 Classes of Levers

Levers- $1^{\text {st }}$ Class

- The fulcrum is in the \qquad and the load and effort is on \qquad
- Makes work easier by multiplying the
\qquad AND changing

- Ex:

Levers-2 ${ }^{\text {nd }}$ Class

- The fulcrum is at the \qquad with the
\qquad in the middle
- Makes work easier by multiplying the
\qquad but \qquad changing
direction.
- Ex:

Levers- $3^{\text {rd }}$ Class

- The fulcrum is again at the \qquad but the
\qquad is in the middle
Does \qquad the effort
force, only multiplies the .

- Ex:

2. Wheel and axles

- A lever that \qquad
- A combination of \qquad of different \qquad
- Smaller wheel is termed \qquad
- MA = Radius of \qquad /Radius of \qquad

3. Inclined Planes (Ramps)

- An inclined plane is a
- Inclined planes make the work of \qquad things easier
- Reduces \qquad

4. Wedges

-

\circ Wedges are used to s \qquad .
5. Screws

- An \qquad wrapped around a \qquad
- The inclined plane allows the screw to \qquad .

6. Pulleys
 .

- Wheels with a \qquad
- A pulley needs a \qquad , chain or belt around the \qquad to make it do work
- They
- Enables us to use \qquad to help us (it is usually easier to pull down to lift something up)
- One end of rope has a \qquad
- Why use pulleys?

Types of Pulleys	
Fixed Pulleys	Movable Pulleys
Object \qquad Pulley stays in the \qquad Force applied only on \qquad of the rope	Pulley is attached to \qquad Pulley and object \qquad Rope is \qquad to something that does not \qquad Force applied to other \qquad
$M A=$	MA=
	Draw

Try this out: What is the mechanical advantage for each of the pulleys in the image?

Compound Machines

- Compound machine: a machine that combines
- \qquad can be put together in different ways to make

