Chapter 7 Chemical Reactions Guided Notes

are formed ion took place?	
are formed ion took place?	
are formed ion took place?	
are formed ion took place?	
ion took place?	
ion took place?	
ibstances formed at the end	
2:	
ds and form.	
nderate () heat.	
and	
in the bonds of the chemicals	
Reactants Products starting materials of a chemical reaction substances formed at the end Energy and Reactions Example: Chemical reaction	

Exothermic Reactions	Endothermic Reactions
If breaking bonds takes	• A chemical reaction in which energy is taken in.
than making them- it releases energy	Endo-into
(exothermic)	Therm-heat
Exo	
therm	"" heat
 Exothermic reactions release energy 	Feels
Get	Require heat or energy or
Give off	
Or release	
E×ample:	Example
Energy is in the products in an Exothermic Reaction	Energy is in the reactants in an Endothermic Reaction
Diagram	Diagram

• What is the law of the conservation of mass?

=_____

During a chemical reaction, matter is neither _____

Section 7.2: Balancing Chemical Equations Chemical Equation A ______ of a chemical reaction

- Putting chemical changes into _____
- The plus sign mean "_____"
- The arrow means "_____" or "make"

Element Symbols

All ______are represented by a 1 or 2 letter symbol

C = Carbon Ne = Neon O = Oxygen

The symbols are shown on the ______

Chemical Formulas

- Shows the elements & _____ of each element in a molecule
- Subscript

H ₂ SO ₄	Hydrogen: Sulfur: Oxygen:
	atoms total

Coefficients

- A formula may begin with a _____.
 - This number is called the _____.
 - Represents the ______ of that compound or atom needed in the
 - For example:
 - 2H₂SO₄ _____
- Never put a coefficient in the _____ (2 NaCl is okay, _____ is not)
- to be in of the formula. If there is no number, then "1" is

		2 molecules of Sulfuric Acid	
	2H₂SO₄	A coefficient is distributed to ALL elements in a compound	
		2 - H ₂ (for a total of)	
		2-S (for a total of)	
		2 - O4 (for a total of)	
Ī			

Reading Chemical Equations

•

- The ______ of the equation are separated by an ______. • _____: The combination of chemicals before the reaction are on the left side of the arrow
 - _____: The right side indicates the combination of chemicals after the reaction.

Balanced Chemical Equations

- A balanced chemical equation follows the ______
- It can tell you the ______ you will need, and the amount of _____- from the reaction.

- For example,
 - Methane + oxygen → _____ + _____
 - $CH_4 + O_2 \rightarrow$
 - Does not tell you how much of each compound you will need.
 - $CH_4 + 2O_2 \rightarrow$
 - This balanced equation does.
- Balance equations by _____
- ... never by changing ______ Remember the _____: Matter cannot be created or destroyed. That means we need to have the _____ on each side of the _____.

Rules for Balancing Equations			
1.	Make a		
2.	Write the	for all the	and
2.	Count the number of	of each type appearing on	
3.	the elements one at a time by adding		(the numbers in front)
4.	Check to make sure it is		

- Begin balancing chemical equations by putting numbers (coefficients) in front of them.
 - Example _____ on one side could become _____
 - Remember that each side needs to have same number of
 - Note Don't change the _____
 - Example:

Photosynthesis Reaction

- Carbon dioxide + water \rightarrow Glucose (sugar) + oxygen Formula: _____
- Count the atoms on each side of the equation

Balancing Equations Practice1. $Mg + N_2 \rightarrow Mg_3N_2$ 2. $P + O_2 \rightarrow P_4O_{10}$ 3. $Na + H_2O \rightarrow H_2 + NaOH$ 4. $MnO_2 + HCl \rightarrow MnCl_2 + H_2O + Cl_2$ 5. $CH_4 + O_2 \rightarrow CO_2 + H_2O$ 6. $C_3H_6 + O_2 \rightarrow CO_2 + H_2O$ 7. $CO + Fe_2O_3 \rightarrow Fe + CO_2$ 8. $CS_2 + Cl_2 \rightarrow CCl_4 + S_2Cl_2$ 9. $CH_4 + Br_2 \rightarrow CH_3Br +$

More Balancing Equations Practice

- A. Magnesium + Oxygen (g) \rightarrow Magnesium Oxide
- B. Hydrogen plus oxygen yield water.
- C. Aluminum bromide plus chlorine yield aluminum chloride and bromine.
- D. Nitrogen gas plus oxygen gas react and form dinitrogen pentoxide.
- E. Potassium iodide reacts with bromine forming potassium bromide plus iodine.

Five Types of Reactions

	Formula	Example
Synthesis		
Decomposition		
Single Displacement		
Double Displacement		
Combustion Reaction		

Synthesis Reaction

- Two or more substances (reactants)
- _____ to form only _____ substance (product)

Decomposition Reaction

• One substance (reactant) combine forms ______ substances (products)

Single-Displacement Reaction

- One _____ and one _____ (in reactants)
- Produces one element and one compound (in Products)

Double-Displacement Reaction

- 2 compounds (in reactants) produce
- _____ (in products)

Combustion Reaction

- A reaction in which a compound and ______
- _____is a common product

Reaction Type Practice Problems

58 + 802 → 8502 + energy	
6CO2 + 6H20 →C6H12O6 + 6O2	
2NaHCO3 → Na2CO3 + H2O + CO2	
$Zn + 2HCI \rightarrow ZnCl2 + H2$	