Forces Notes

Chapter 11.3 and Chapter 12

Section 11.3 Force

- What are the 4 types of forces?
- What is Force?
that one body \qquad on another
- It is cause of \qquad or \qquad in object's \qquad
- Can cause a change in \qquad \& \qquad
- There can be \qquad without a \qquad

Net Forces

Type of Forces	Definition	Example/Diagram
	The \qquad of all the \qquad on an \qquad .	
	Opposing forces are \qquad \& completely \qquad ; net force of \qquad	
	Forces acting on object, \qquad its \qquad due to \qquad Net force is \qquad	

The Force of Friction

-- force that opposes motion between \qquad in \qquad with

- Causes a \qquad
- Depends upon:
-
- \qquad surfaces together
- What is this unbalanced force that acts on an object in motion?

Types of Friction	Definition	Example
1.	\qquad - between surfaces that are \qquad (at rest). \qquad when moving an object	
2.	\qquad \qquad the motion of two \qquad past each other.	
3.	\qquad - the force \qquad the motion when a body (such as a ball, tire, or wheel) \qquad . Causes \qquad	

- Friction is necessary for many \qquad to work correctly.
- Ex: : add \qquad or other low-friction materials.
- Ex:
- \qquad : make surface \qquad
- Ex:

Section 12.1

Newton's First Law

- What does Newton's First Law of Motion state?
- What is it also called?
- \qquad : the tendency of an object to remain at \qquad or in \qquad until acted upon by an \qquad
- If object is moving, it keeps moving at \qquad \& in same direction unless unbalanced force acts on it

Newton's Second Law

- What does Newton's Second Law state?
- Larger \qquad requires greater \qquad than smaller mass to achieve the
- Acceleration depends on the \qquad of the \qquad and the \qquad applied
- more mass, harder to \qquad
- , faster acceleration

Calculating Newton's Second Law

- Formula: \qquad
- Unit of force: \qquad
- What does 1 N equal?
$F=$
$m=$
$a=$

Problem: Newton's Second Law

1. Zookeepers lift a stretcher that holds a sedated lion. The total mass of the lion and stretcher is 175 kg , and the upward acceleration of the lion and stretcher is $0.657 \mathrm{~m} / \mathrm{s}^{2}$. What force is needed to produce this acceleration of the lion and the stretcher?

List the given and unknown values. Insert the known values into the equation, and solve.

Write the equation for Newton's second law.
2. What net force is needed to accelerate a $1.6 \times 10^{3} \mathrm{~kg}$ automobile forward at $2.0 \mathrm{~m} / \mathrm{s}^{2}$?
3. A baseball accelerates downward at $9.8 \mathrm{~m} / \mathrm{s}^{2}$. If the gravitational force is the only force acting on the baseball and is 14 N , what is the baseball's mass?
4. A sailboat and its crew have a combined mass of 655 kg . If a net force of 895 N is pushing the sailboat forward, what is the sailboat's acceleration?
5. The net forward force on the propeller of a 3.2 kg model airplane is 7.0 N . What is the acceleration of the airplane?

Section 12.2

Gravity

- Gravity: \qquad any two objects in the universe
- Acts on all objects with \qquad of the objects and the distance
- The strength of the force depends on the
- increases as...
- ___increases
- \qquad decreases

Law of Universal Gravitation

- What does the Law of Universal Gravitation state?
- Not only limited to \qquad but also acts between all objects in the universe.
- Any two objects, from \qquad to the \qquad , experience a gravitational attraction.
- You are attracted to the \qquad but the Earth is attracted to \qquad !
- You also share an attractive force with all the other objects around you, but they are
\qquad -
- If the mass of either of the objects increases, the
\qquad between them increases
- If the objects are \qquad the gravitational force between them \qquad
- Which exerts more gravity - the Earth or the moon?

Weight

- The \qquad on an object is called the object's \qquad
- Larger \qquad larger \qquad
- Different planets different \qquad (g)
- so you would \qquad different \qquad
- Earth's gravity= \qquad Moon's gravity= \qquad

Mass vs Weight

- Mass is \qquad
- Since an object's force of gravity depends on its mass, the \qquad has, the
- ___always the same of gravity it exerts.
\qquad depends on gravity (__)

Calculating Weight

- Weight Formula=
- $W=$
- $g=$
- SI unit of weight is \qquad

W :
m :
g:

Weight Practice Problems:

1. Jimmy has a mass of 37.5 kilograms here on earth. What is his weight?
2. What is the weight of a person with a mass of 72 kg on Earth?
3. A boy weighs 400 N . What is his mass?
4. An astronaut has a mass of 100 kg and has a weight of 370 N on Mars. What is the gravitational strength on Mars?

- Type of \qquad
- exerts on moving object; type of friction
- Acts in opposite \qquad
- Air resistance pushes up as \qquad .
- Amount of air resistance depends on \qquad ,
\qquad , \& density of an object

- \qquad = Large amount of air resistance

Free Fall

- When the force of gravity is the \qquad on an object
- If there was \qquad all objects would fall at the same \qquad
- Why do astronauts in orbit seem weightless?
- The acceleration caused by gravity (g) is \qquad
- Is the same for all \qquad on \qquad .
- Which objects will fall to the ground first when placed in a vacuum (absence of air)?

Terminal Velocity

- What is terminal velocity?
- Force of gravity is constant
- Eventually gravity will balance with \qquad
- Air resistance increases as you \qquad until the force is equal
- Equal forces, no \qquad
- Constant \qquad $=$ terminal velocity

Projectile Motion

- Things can move \qquad and \qquad at the same time
- If no force other than gravity acts, the sideways velocity will \qquad
- The vertical velocity \qquad
- \qquad

Horizontal and Vertical Motions

- When you throw a ball, the force exerted by your hand pushes the ball \qquad .
- This \qquad the ball \qquad .
- No force accelerates it forward, so its horizontal velocity is constant, if you ignore air resistance.
- However, when you let go of the ball, \qquad giving it vertical motion.
- The ball has constant horizontal velocity but \qquad
- Gravity exerts an \qquad on the ball, changing the direction of its path from only forward to
- The result of these two motions is that the ball
\qquad —.

Section 12.3

Newton's Third Law

- What does Newton's Third Law State?
- For every force, there is an
- For every action there is an

Action and Reaction

- When a force is applied in nature, a \qquad occurs at the same time.
- When you jump on a trampoline, for example, you exert a \qquad on the trampoline.
- Simultaneously, the trampoline exerts an \qquad sending you high into the air.
- According to the third law of motion, \qquad and \qquad forces act on different objects.
- Thus, even though the forces are equal, they are \qquad they act on different objects.

Example:

- A swimmer "acts" on the water, the "reaction" of the water pushes the swimmer forward.
- Thus, \qquad or \qquad acts on the swimmer so a change in his or her motion occurs.
Example:
- In a rocket engine, burning fuel produces hot gases. The rocket engine exerts a
\qquad and causes them to escape out the back of the rocket.
- By Newton's third law, the gases exert a force on the rocket and push it \qquad .

Momentum

- A moving object has a property called momentum that is related to \qquad is needed to \qquad .
- The momentum of an object is the product of its \qquad

