Forces Notes Chapter 11.3 and Chapter 12

Section 11.3 Force

- What are the 4 types of forces?
- What is Force?
 - ______ that one body ______ on another
 - It is cause of ______ or _____ in object's ______
 - Can cause a change in _____, ____, & _____, & _____,
 - There can be ______ without a ______

<u>Net Forces</u>

Type of Forces	Definition	Example/Diagram
	The of all the on an	
	Opposing forces are & completely; net force of;	
	Forces acting on object, its due to: Net force is	

The Force of Friction

- _____- force that opposes motion between ______ in _____ in _____
- Causes a _____
 - causes a ___
- Depends upon:
 - ______ surfaces together
- What is this unbalanced force that acts on an object in motion?

Types of Friction	Definition	Example
1.	between surfaces that are (at rest) when moving an object	
2.	the motion of twothe motion of	
3.	the force the motion when a body (such as a ball, tire, or wheel) Causes	

Friction and Motion

- Friction is necessary for many _______to work correctly.
 Ex:
- ______ or other low-friction materials.
 Ex:
 - _____: make surface ______
 - Ex:

Section 12.1

Newton's First Law

- What does Newton's First Law of Motion state?
 - What is it also called?
- ______ the tendency of an object to remain at ______ or in _____ until acted upon by an ______
- If object is moving, it keeps moving at ______ & in same direction unless unbalanced force acts on it

Newton's Second Law

- What does Newton's Second Law state?
- Larger _____ requires greater _____ than smaller mass to achieve the
- Acceleration depends on the _____ of the _____ and the _____ applied
 more mass, harder to ______
 - _____, faster acceleration

Calculating Newton's Second Law

- Formula: _____
- Unit of force: _____

F =

m =

a =

What does 1 N equal? _____

What's the formula when finding acceleration? What's the formula when finding mass?

Problem: Newton's Second Law

1. Zookeepers lift a stretcher that holds a sedated lion. The total mass of the lion and stretcher is

175 kg, and the upward acceleration of the lion and stretcher is 0.657 m/s^{-} . What force is needed to produce this acceleration of the lion and the stretcher?

<u>List the given and unknown values.</u> <u>Insert the known values into the equation, and solve.</u>

Write the equation for Newton's second law.

Newton's Second Law Practice Problems

- 2. What net force is needed to accelerate a 1.6 \times 10³ kg automobile forward at 2.0 m/s²?
- 3. A baseball accelerates downward at 9.8 m/s². If the gravitational force is the only force acting on the baseball and is 14 N, what is the baseball's mass?
- 4. A sailboat and its crew have a combined mass of 655 kg. If a net force of 895 N is pushing the sailboat forward, what is the sailboat's acceleration?
- 5. The net forward force on the propeller of a 3.2 kg model airplane is 7.0 N. What is the acceleration of the airplane?

Section 12.2

<u>Gravity</u>

- Gravity: _____ any two objects in the universe
 - Acts on all objects with _____
- The strength of the force depends on the _____ of the objects and the distance
 - increases as...
 - _____increases
 - _____ decreases

Law of Universal Gravitation

- What does the Law of Universal Gravitation state?
- Not only limited to _____, but also acts between all objects in the universe.
- Any two objects, from ______to the _____, experience a gravitational attraction.
- You are attracted to the _____, but the Earth is attracted to _____!
- You also share an attractive force with all the other objects around you, but they are
- If the mass of either of the objects increases, the ______ between them increases
- If the objects are _____, the gravitational force between them _____
- Which exerts more gravity the Earth or the moon?

Weight

Weight Practice Problems:

- 1. Jimmy has a mass of 37.5 kilograms here on earth. What is his weight?
- 2. What is the weight of a person with a mass of 72 kg on Earth?
- 3. A boy weighs 400 N. What is his mass?
- 4. An astronaut has a mass of 100 kg and has a weight of 370 N on Mars. What is the gravitational strength on Mars?

<u>Air Resistance</u>

- Type of _____
 - _____ exerts on moving object; type of friction
- Acts in opposite _____
- Air resistance pushes up as ______
- Amount of air resistance depends on ______,
 - _____, & density of an object
- _____ = Large amount of air resistance

<u>Free Fall</u>

- When the force of gravity is the _____ on an object
- If there was ______, all objects would fall at the same ______
 - Why do astronauts in orbit seem weightless?
- The acceleration caused by gravity (g) is _____
- Is the same for all _____ on _____.
 - Which objects will fall to the ground first when placed in a vacuum (absence of air)?

Terminal Velocity

- What is terminal velocity?
- Force of gravity is constant
- Eventually gravity will balance with ______
- Air resistance increases as you _____ until the force is equal
- Equal forces, no _____
- Constant _____ = terminal velocity

Projectile Motion

- Things can move ______ and _____ at the same time
- If no force other than gravity acts, the sideways velocity will ______
- The vertical velocity ______
- •

Horizontal and Vertical Motions

- When you throw a ball, the force exerted by your hand pushes the ball ______.
- This ______ the ball ______.
- No force accelerates it forward, so its horizontal velocity is constant, if you ignore air resistance.
- However, when you let go of the ball, ______, giving it vertical motion.
- The ball has constant horizontal velocity but ______

The momentum of an object is the product of its ______