Ch. 11.1: Speed

-
-

\qquad - an object's change in position relative to a reference point.
space and time.

- Object that you assume is \qquad

Displacement

- Displacement- \qquad -.
- Always includes \qquad
- Shorter than distance \qquad

Speed

- To describe motion, you \qquad
- \qquad is the \qquad an object travels per unit of \qquad -
\qquad -A moving object that doesn't change it's speed.
-
- Speed is usually NOT CONSTANT

Calculating Speed

- To calculate its speed you divide the distance it travels by the time it travels
- Speed (S) = \qquad (d) / the amount of \qquad it took (\dagger).
- $\mathrm{S}=$ \qquad
- Units of Speed: \qquad , \qquad ,
- Problem: If I travel 100 kilometer in one hour then I have a speed of...
- Problem: If I travel 1 meter in 1 second then I have a speed of....
- Problem: If a runner travels 100 m in 10 seconds what was his average speed?
- Formulas for the other pieces too

Distance $=$ \qquad x \qquad Time $=$ \qquad

Practice Problems: Speed

- 1. A car race is 500 km long. It takes the winner 2.5 hours to complete it. How fast was he going?
- 2. It is 320 km to Las Vegas. If you average $80 \mathrm{~km} / \mathrm{hr}$, how long will it take you to get there?
- 3. You are going on a trip. You average $80 \mathrm{~km} / \mathrm{hr}$ for 6 hours. How far did you go?

Velocity

- Formula: \qquad
- Velocity - The \qquad an object travels in a certain period of \qquad in a specific
- May be \qquad or \qquad
- It is more precise for describing motion
- Example:
- An airplane moving \qquad at \qquad
- A missile moving \qquad $a \dagger$ \qquad
- People often use the word \qquad
- Speed tells how
- Velocity tells both \qquad
$\rightarrow \quad=40 \mathrm{~km} / \mathrm{hr}$ (only speed)
\rightarrow = $=40 \mathrm{~km} / \mathrm{hr}$ west (both speed and direction)
- Velocity can change in two ways
-
- Change \qquad

Practice Problems: Velocity

1. Young male cheetah covered 100 meters east in 7.19 seconds in a timed run. What is his velocity?
2. It took 3.5 hours for a train to ravel the distance between two cities at a velocity of $120 \mathrm{~km} / \mathrm{hr}$. How many kilometers lie between the two cities?

Understanding Speed Graphs

Write a brief story to go along with this distance-time graph.

Using graph above, answer the following questions.
What is the total distance traveled by the object in this graph?
What is the object's displacement?
What is the frame of reference?

How does this graph display speed?

How do you know?

Interpreting Slope

The graph on the right show the motion of two cars traveling at different speeds.
Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { change in distance }}{\text { change in time }}$

Use the slope equation to calculate the slope of each graph.

What is the slope for the graph on the right?

What is the slope from points A to B ?

1. What is the speed of the first guy on the graph?
2. What is the speed of the tired guy in the middle of the graph?
3. What is the speed of the last guy in the graph?

Using graph on the right, who is the fastest?

Using graph on the right.

1. Who has the greater velocity?
2. Who starts ahead of the starting line?
3. What happens at 2 seconds?

Describe what is happening in this graph.

Describe the routine of this runner
A.
B.
C.

D

Use the graph to calculate the velocity

Ch. 11.2: Acceleration

- Any \qquad is acceleration, even if the \qquad of the object remains the same.
- Acceleration - \qquad

Types of acceleration

- speed
- Example: Car speeds up at \qquad
-
- Example: Car \qquad down at stop light
- Changing
- Example: Car turns \qquad (can be at \qquad
- How can a car be accelerating if its speed is a constant $65 \mathrm{~km} / \mathrm{h}$? \qquad

Calculating Acceleration

- If an object is moving in a straight line
- Calculate acceleration by figuring the difference in \qquad from initial velocity and then divide by \qquad _.
- Units of acceleration: \qquad
- Formula:

Practice Problem:

1. A skydiver accelerates from $20 \mathrm{~m} / \mathrm{s}$ to $40 \mathrm{~m} / \mathrm{s}$ in 2 seconds. What is the skydiver's average acceleration?
2. 2. Natalie accelerates her skateboard along a straight path from o m / s to $4.0 \mathrm{~m} / \mathrm{s}$ in 2.5 s . Find her average acceleration.
1. 3. A turtle swimming in a straight line toward shore has a speed of $0.50 \mathrm{~m} / \mathrm{s}$. After 4.0 s , its speed is $0.80 \mathrm{~m} / \mathrm{s}$. What is the turtle's average acceleration?
1. 4. Mai's car accelerates at an average rate of $2.6 \mathrm{~m} / \mathrm{s} 2$. How long will it take her car to speed up from $24.6 \mathrm{~m} / \mathrm{s}$ to $26.8 \mathrm{~m} / \mathrm{s}$?
1. 5. Tom is driving down I-75. He notices a police officer and slows down from $81 \mathrm{~m} / \mathrm{s}$ to $62 \mathrm{~m} / \mathrm{s}$ in 5.0 s . Calculate his acceleration.
1. 6. A cyclist travels at a constant velocity of $4.5 \mathrm{~m} / \mathrm{s}$ westward and then speeds up with a steady acceleration of $2.3 \mathrm{~m} / \mathrm{s} 2$. Calculate the cyclist's speed after accelerating for 5.0 s .

Graphing Acceleration

- Can use 2 kinds of graphs
- Speed vs. time
- Distance vs. time
* Dependent Variable= \qquad
* Independent Variable= \qquad
- Speed is increasing with time $=$ \qquad
- Line is straight = \qquad
- How is the object in the graph below moving? \qquad
Speed vs. Time Graphs

- On Distance vs. Time graphs a \qquad means the object is \qquad
- Curved line also means your \qquad is \qquad Remember \qquad

