Chapter 14 Population Guided Notes

 HABITAT & NICHE Habitat:	
• factors	
• factors	
Niche: includes all of the factors that a needs t	to,
, and	
	**A is
conditions	where a species lives and
	a is how it
Resource availability gives to a community.	lives within its habitat.
Species can share and	·
• Ex:	
Competition occurs when two use resources in the	e.
Ex:	•
· [x	
Compatitive Evolutions	a. Competitive exclusion
Competitive Exclusion:	
: keeps two species from	n Superior Comp Competitive ability differences
occupying the same	nda
•	Competitive
1. One species is better to the niche and the other will	ability differences
either be out or become	
he Partitioning	ag 🔪 📲
2: the niche	Inferior Compe
will be	Time
3. The two species will become more & more	e
green warbier	
y-breazed	
nyrfe weber	
Ecological Equivalents:	
Are species that but live i	n different
- <u></u> .	
• Ex:	
Section 14.2: COMMUNITY INTERACTIONS	
Competition: Occurs when organisms fight for the same	
Two types of competition:	
1. Interspecific:	Ex:
2. Intraspecific:	
-	unu uno men
 Predator: Prey 	
• Example:	

SYMBIOSIS

<u>Symbiosis</u> is a close relationship between ______ that live ______ that live ______
together

Symbiosis	Definition	Example	Organism 1	Organism 2
1.				
2.				
3.				

3 Types of symbiosis:

Match each of the following relationships descriptions with the correct symbiosis.

- 1. _____: A deer tick feeds on the blood of a human and may inject bacteria that cause Lyme Disease.
- 2. _____: A woodpecker eats moths preying on a cactus. The cactus provides a protected habitat for the wood pecker.
- 3. _____: A plover bird eats leeches off the gums of a crocodile and parasites from the crocodile's hid. The crocodile provides protection for the plover.
- 4. _____: Spanish moss gains exposure to sunlight by growing on the branches of trees. It does not harm the tree.
- 5. _____: Aphids eat the sap from plants and excrete sticky waste that ants eat. The ants protect the aphids from predators.
- 6. _____: A leech feds on a host's blood.
- 7. How is the predator/prey relationship different from parasitism? _____

Section 14.3: Population Distribution

Population density: the ______ that live in a ______

_____ can calculate population density

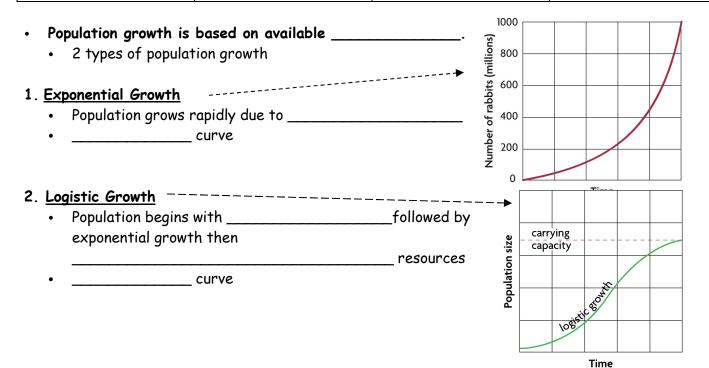
Equation: _____ = population density

• Example: 200 deer in an area of 10 square kilometers

_____ = ____ deer per sq. km

Population dispersion

The way in which ______ of a _____ •


• 3 types of dispersion patterns

Dispersion pattern	Definition	Example	Diagram
1.			
2.			
3.			
5.			

Section 14.4: Population Growth

4 Factors determine the size of a _____.

2.	3.	4.
Ex:	Ex:	Ex;

 that an Population Crash: ○ Dramatic 	The can in the si of time		
	of this	scarce	
suppl	Υ,, ·	, sour co etc.	
-	limit miting factors:	-	
Limiting Factor	Definition	Causes	6
1.			
2.			

Section 14.5: Ecological Succession

 Ecological Succession: sequence of ______ that create a ______ or a damaged community

2 types of Ecological Succession:

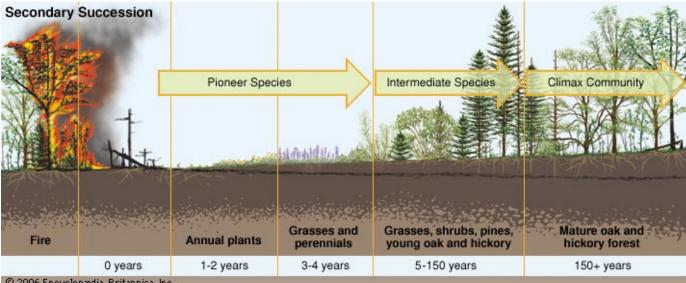
1. _____ succession

2. _____ succession

PRIMARY SUCCESSION

- Development of an ______ in an area that has been ______
- Started by ______ to live in an • _____area Ex: (______)
 - Lichens ______ to form soil.
 - Low, growing moss plants ______ and prevent ______

Steps of Primary Succession:


- 1. Bare _____, is broken down by _____, ____, etc.
- 2. _____ & _____ grow on rock and break it up even more

5.	Different tree species () begin to grow and eventually	out the
ori	ginal		

SECONDARY SUCCESSION

- Does not begin with ______ Occurs after a _____, etc.)
- Begins with ______ species where _____ was left ____
- Occurs _____ and does not _____ (small disturbances like _____ _____ start the process over)

© 2006 Encyclopædia Britannica, Inc.

Climax Community

- This ____ •
- This community may _____

_____ or

_____is called a climax community.

that can last for

Secondary Succession of an Oak and Hickory Forest

Pioneer species Annual plants grow and are succeeded by grasses and perennials.

Intermediate species Shrubs, then pines, and young oak and hickory begin to grow.

Climax community The mature oak and hickory forest remains stable until the next disturbance.

Γ	-	
Γ		
H		
	4	