

ADP = **a**denosine **Dip**hosphate

• Energy is released when phosphate bond is broken to make ADP

ATP/ADP Cycle

- A. Breakdown of ATP-3 steps:
- One phosphate bond is broken (always between the last 2 phosphate bonds)
- This forms ADP.
- Phosphoryation occurs when the released phosphate group (and energy) bonds with another molecule. <u>Draw steps below.</u>

B. Formation of ATP- reverse of breakdown:

 A phosphate group breaks away from a molecule and is added back to ADP. This requires ENERGY. <u>Draw step below.</u>

*** This requires enzymes-special molecules that speed up chemical reactions.

Light-dependent Reaction

Light-independent Reaction

Photosynthesis: Compare and Contrast			
<u>Characteristics:</u>	Types of Reactions:		
	Light Reaction	Dark Reaction (Calvin Cycle)	
Light (Is it needed?)	Yes	No	
Location (Where does it take place?)	Thylakoids	Stroma	
Sources (What is needed?)	Light and H_2O	ATP, NADPH, & CO ₂	
Products (What is made?)	ATP, NADPH, & O ₂	C ₆ H ₁₂ O ₆	
Role of ATP (What is energy used for?)	To start Dark Reaction	To make glucose	

Cellular Respiration Occurs in ALL types of cells (autotrophs and heterotrophs) because all organism need ATP to survive. The reason cell respiration occurs is to produce ATP. The waste products will be available for autotrophs to use in photosynthesis. C6H12O6 + O2 → CO2 + H2O + ATP

2 Types of Fermentation

Lactic Acid Fermentation Reactants: Glucose Products: Lactic Acid

This is what <u>causes sore</u> <u>muscles</u> after heavy exercise!

Alcoholic Fermentation Reactants: Glucose Products: Alcohol, CO2

Bakers & brewers use a fungus (yeast) to make bread, beer, wine, etc.

	<u>Photosynthesis</u>	<u>Cell</u> <u>Respiration</u>
Organelle (takes place in)	chloroplast	mitochondria
Reactants	CO2 + H2O + Energy	C6H12O6 & O2
Products	C6H12O6 & O2	CO2 + H2O + Energy

