Chapter 6 Structure of Matter: Guided Notes

Result from way		_or ar	°e			
– Similariti	ies & diffe	rences of				
When			the resul	ting compound has		very
	from tl	nose of		_that make it		
Always have sar	1e					
<u>at are bonds?</u>						
Α		_is an attractiv	/e	that holds	or	
Atoms bond whe	en their			interact.		
 This way, 	, the			of the atom	is	
ds are Flexible.	····					
		hpicks, they AR	E like			
		• •		, but the atoms a	ire not	
	ure is the			are _		
Chemical Struct	ure is the	is the		areare		
Chemical Struct You can see this	ure is the 	is the		areare		
Chemical Struct You can see this	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this Compounds with	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this Compounds with	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this Compounds with	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this Compounds with Ball-and-stick:	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this Compounds with	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this Compounds with Ball-and-stick:	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this Compounds with Ball-and-stick:	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this Compounds with Ball-and-stick: Space-filling:	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this Compounds with Ball-and-stick:	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two
Chemical Struct You can see this Compounds with Ball-and-stick: Space-filling:	ure is the 	is the _or more atoms	have	are between the _ model.		_ of two

Electron Dot Diagram

- A way of keeping track of ______.
- How to write them -_____
- Write the _____.
- Put one _____ for each valence electron
- Don't pair up until they have to

Example: Nitrogen 5e-

Write the electron dot diagram for the following elements.

- Cation
 - o _____lose electrons to fill their outer levels
 - They make _____.
- Anion
 - o _____ gain electrons to fill their outer levels
 - They make _____.

What are 3 ways that atoms can form bonds?			
1. Ionic Bonds			
2. Covalent Bonds			
3. Metallic Bonds			

Ionic Bonds

- bond formed between _____ by the _____ of
- Ionic compounds result when ______
- Valence electrons from one atom are ______to another atom.
- <u>Properties of Ionic Compounds</u>
 - Stronger _____
 - o _____ points
 - Conduct ______ when in solution or in a _____
 - o Generally _____
 - Generally ______ at room temp.
- Ionic Compounds
 - ______ for every ______ ion.
 - _____: CaF2, or _____ for every _____ ions.

For each elements on your notes, predict the charge of its most common ion using the periodic table.

Р	Ne	Ca	Be	۱	Не
Na	Mg	Br	0	Li	F
s	К	N	Cs	Cl	Xe
0 0 0	Form a	ls are because re important in detern Iron (II) Copper (II) Tin (IV) Lead (II) III) oxide	they are nining the Ir Ca T La		
• <u>Writi</u> 1. Wri 2. Wri cation 3	ng Ionic Formu te the chemical s ite the and anion. th for the ot	las ymbols for the _number on top of the e oxidation numbers w heror	(first) and Chemical Symbo riting each numb ion.	ols for the Der as a	Example
		they can be 2. magnesium oxide		m sulfide	
1. 3.	<u>e the formula (</u> Copper (I) chlo Chromium (I) Sul Silver (II) Fluori	fide	4. Nickel	(IV) Oxide (II) Oxide nese (II) Nitride	
-					

<u>Rules for Naming Ions</u> 1. The names of metals				
2. Changing the name of:				
 Root of element name + = name of i 	ion			
 Examples: The name of chlorine's ion: 				
The name of nitrogen's ion:				
Sulfur Lithium				
	en			
Name the following Tang Dresting				
Name the following Ions Practice 1. NaF 2	2. MgO			
	1. Li ₂ S			
	5. KI			
			-	
Name the following Ions (transition metals)				
1. CuCl 2	2. PbO2			
3. ZnS 4	1. Ni2O3			
5. NiO 6	6. MnBr4			
	••••••	Common P	olvatomic	lons
Polyatomic Ions	NH4 ⁺	ammonium		chromate
\circ Ions that form after elements have		acetate	$Cr_2O_7^{-2}$	dichromate
electrons.	CN ⁻	cyanide	MnO ₄	permangana
\circ Each polyatomic ion already has a name.	CO ₃ ⁻²	carbonate	NO ₂ ⁻	nitrite
• Ends in or	HCO ₃ ⁻	bicarbonate	NO ₃	nitrate
	$C_2O_4^{-2}$	oxalate	OH.	hydroxide
	CIO ⁻	hypochlorite	PO4 ⁻³	phosphate
Rules for Naming Polyatomic Ions	CIO ₂ .	chlorite	SO ₃ ⁻²	sulfite
Step 1: Write the symbol of the		chlorate	SO ₄ ⁻²	sulfate
Step 2: Write the formula of the		perchlorate	$S_2O_3^{-2}$	thiosulfate
Step 2. Write the formula of the		perciniorate	5203	thosunate
Step 3 : Determine the using the periodic	table and the _	of		
polyatomic ions.				
Step 4: Determine the formula from the ions.				
• The atoms in reminds u	is they are a sing	gle ion.		
 Figure out the polyatomic ion formula. 		L		
1. Potassium hydroxide	2. Sodium	carbonate _		
3. Hydrogen carbonate	4. Calcium	chlorate		
	2. CaSO₄			

н
Ч
Covalient bond
_

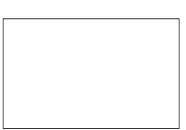
•	There are	tha	t exist in nature	e as	_molecules.
---	-----------	-----	-------------------	------	-------------

- Ex: _____
- _____ Compounds
 - What does binary mean?
 - Binary covalent compounds are between ______
- Nonmetals can share electrons in many ______.
- Two nonmetals can create multiple compounds together.
 - Example:
 - Hydrogen only has _____ and _____
 - \circ Behaves ______ than any other element on the PT
 - This means that hydrogen can act as either a _____or a _____
- Prefixes
 - \circ To show the correct ratio of elements, we use _____
 - Remove the _____ or _____ from a prefix before adding it to element. Leave
- How would you write each of the prefixes in front of oxide?

mono	di
tri	tetra
penta	hexa
hepta	_ octa
nona-	deca-

Prefix	Number
mono	1
di	2
tri	3
tetra	4
penta	5
hexa	6
hepta	7
octa	8
nona	9
deca	10

Naming Binary Covalent Bonds


Step 1: Write the name of the first _____.

Step 2: Write the name of the _____ changing its ending to -ide.

Step 3: Add ______ to specify how many of each element are present.

Rules for Using Prefixes

- Rule 1: Prefixes are only for _____ compounds.
- Rule 2: The prefix _____ is never used on the _____ of a binary covalent compound. It is ______ that there is only 1.
 - Example: CO2 is _____, and not monocarbon dioxide.
- Rule 3: Remove the -o or -a from a prefix before adding it to _____.
 - Example: CO is _____, and not carbon monooxide.

Name the binary covalent compounds

CO ₂ :	N ₂ S:
CS ₂ :	SiS ₂ :
PBr ₃ :	<u> </u>
PBr ₅ :	NBr ₃ :
P ₂ S ₅ :	N ₂ Cl ₄ :

Writing Covalent Bond Formulas	
Step 1: Write the symbol of the	_ and the
that matches the	
Step 2: Write the symbol of the	and the
that matches the	

What is the formula of each of the binary covalent compounds named below.

carbon tetrachloride	iodine heptafluoride
phosphorous pentachloride	dinitrogen tetroxide
dinitrogen monoxide	phosphorous trichloride
carbon monosulfide	carbon monoxide
boron trihydride	iodine monochloride
disulfur hexabromide	tetrasulfur tetranitride
silicon disulfide	dihydrogen monoxide
phosphorous triiodide	chlorine pentafluoride
nitrogen trichloride	nitrogen dioxide

<u>Metallic Bond</u>

٠

- The bonding between atoms within _____.
- The sharing of ______ electrons.
 - _____of electrons
 - Metals are _____ and conduct _____ well
 - Their atoms and electrons can ______ throughout a metal's packed structure.

		•••••
<u>R</u>	 What elements do ionic compounds contain? 	
	 What elements do covalent compounds contain? 	
	 Decide whether the compounds are ionic or covalent. 	
	SrO NCl ₃ KF	
	N ₂ O ₄ CBr ₃ AlCl ₃	NaNO ₃
	CaF ₂ IF ₇ CO	Fe ₂ O ₃
	 Write the formulas of the compounds. 	
	hydrogen monochloride:	
	barium fluoride	
	tin (II) sulfide	-
	dinitrogen monoxide	_
carbon disulfide		
		_
	disulfur hexachloride	_
	sodium phosphate	_ :
	platinum (II) chloride	
	1	_
- 4 e :		