

Seedlings in a Jar

A. The total mass of the original jar
with seeds will be more than the total mass of the jar with the seedlings.
B. The total mass of the original jar with seeds will be less than the total mass of the jar with seedlings.

C. There will be no change in the total mass of the jar with seedlings

The Law of Conservation of Matter:

 Matter cannot be created nor destroyed.So... Whatever atoms a chemical reaction begins with, then the chemical reaction must end with the exact atoms in the same amounts.

Chemical Reactions

- It is a change in matter that produces one or more NEW SUBSTANCES with different properties

Chemical Reactions

- A chemical reaction is another
name for a chemical change
- New properties are formed
- No new atoms are made, but atoms are rearranged
- New compounds can be made
- Old bonds are broken and new bonds are formed
- Always involves changes in energy

Energy and Reactions

- Chemical reaction occurs when chemical bonds break and new bonds form.
- Always takes a little energy
- Chemical reactions usually absorb heat or liberate (release) heat.
- Different forms of energy can
- Different

- If breaking bonds takes less energy than making them- it releases energy (exothermic) -Exo- outside
-therm- heat
Exothermic reactions release energy -Get hot/warm

-Give off light
-Or release electricity

Energy and Reactions

Forming bonds releases energy

* Energy is conserved
* Chemical Energy is energy stored in the bonds of the chemicals

Energy and Reactions

Exothermic Reactions
$2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}+$ Energy

Energy is in the products in an Exothermic Reaction

Energy and Reactions

Endothermic Reaction

Energy and Reactions

Endothermic Reactions

Example: Photosynthesis
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+$ Energy $\rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$

Energy is in the reactants in an
Endothermic Reaction

What is the law of the conservation of mass?

- During a chemical reaction, matter is neither created nor destroyed.
- Atoms in = atoms out

Describing Reactions
 mantruss mation

Describing Reactions

Chemical Equation

Chemical Formulas

- Shows the elements \& number of
- A symbolic representation of a chemical reaction
- Putting chemical changes into words atoms of each element in a molecule

$$
\mathrm{H}_{2} \mathrm{SO}_{4}
$$

Hydrogen: 2 atoms
Sulfur: 1 atom
Oxygen: 4 atoms

Subscript

7 atoms total

Describing Reactions

Coefficients

A formula may begin with a number.

- This number is called the coefficient.
- Represents the number of molecules of that compound or atom needed in the reaction.
For example:
$2 \mathrm{H}_{2} \mathrm{SO}_{4}-2$ molecules of Sulfuric Acid
- Never put a coefficient in the middle of a formula (2 NaCl is okay, Na 2 Cl is not)
If there is no number, then " 1 " is understood to be in front of the formula.

Coefficients

$2 \mathrm{H}_{2} \mathrm{SO}_{4}$

2 molecules of Sulfuric Acid

-A coefficient is distributed to ALL elements in a compound
$2-\mathrm{H}_{2}$ (for a total of 4 H atoms)
$2-S$ (for a total of 2 S atoms)
$2-\mathrm{O}_{4}$ (for a total of 8 O atoms)

How Many of Each Atom?

Write these down on a piece of paper?

Describing Reactions

Reading Chemical Equations

- The two sides of the equation are separated by an arrow.
- REACTANTS: The combination of chemicals before the reaction are on the left side of the arrow
PRODUCTS: The right side indicates the combination of chemicals after the reaction.

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Balanced Chemical Equations

- A balanced chemical equation follows the law of conservation of mass.
It can tell you the amount of reactants you will need, and the amount of
products you will get from the reaction.
- For example,
- Methane + oxygen \rightarrow carbon dioxide + water
$\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- Does not tell you how much of each
$-\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- This balanced equation does.

Balance equations by
changing coefficients

$$
2 \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NaCl}
$$

... never by Changing formula subscripts

Parts of a chemical Equation

Rules for balancing

Make a T-chart
1 Write the correct formulas for all the reactants and products
2 Count the number of atoms of each type appearing on both sides
3 Balance the elements one at a time by adding coefficients (the numbers in front ONLY)
4 Check to make sure it is balanced.
*****REMEMBER: IF YOU CHANGE A COEFFICIENT, ALL ELEMENTS IN THAT COMPOUND ARE AFFECTED.

Rules of the Game

Photosynthesis Reaction

${ }^{\circ}$. Matter cannot be created or destroyed.
-2. Subscripts cannot be added, removed, or changed.
-3. You can only change coefficients.
4. Coefficients can only go in front of chem.
formulas...NEVER in the middle of a formula.
-A few extratips:
Try balancing big formulas first; save free elements for last. If the same polyatomic ion appears on both sides of the equation, it's usually okay to treat it as one unit.
There is no one particular way to balance equations. Some equations are harder to balance than others and might require some creativity to solve.

- Carbon dioxide + water \rightarrow Glucose (sugar) + oxygen

$$
6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}
$$

- Count the atoms on each side of the equation.
C: 6
C: 6
0: 18
0:18
H:12
H:12

Balancing Equations

- Balance the following equation by adjusting coefficients.

K	
K	reactants
	2
products	
Cl	2
O	2
	6

$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

Balancing Equations

1) Determine number of atoms for each element.
2) Pick an element that is not equal on both sides of the equation.
3) Add a cocfficient in front of the formula with that element and adjust your counts.
4) Continue adding coefficients to get the same number of atoms of each element on each side.

Try these:

1) $\ldots-\mathrm{HCl}+$ _ $_{2} \rightarrow \ldots \mathrm{Cl}_{2}+\underset{\mathrm{H}_{2} \mathrm{O}}{ }$
5.) $_\mathrm{NO}_{2}+$ _ $_{2} \mathrm{O} \rightarrow$ _ $\mathrm{HNO}_{3}+\ldots \mathrm{NO}$
2) \quad _ $\mathrm{Fe}+\underset{-}{ } \mathrm{H}_{2} \mathrm{O} \rightarrow$ _ $\mathrm{Fe}_{3} \mathrm{O}_{4}+\ldots \mathrm{H}_{2}$
6.) $\quad _\mathrm{NaCl}+$ _ $^{\mathrm{BeF}} \mathrm{F}_{2} \rightarrow$ _ $\mathrm{NaF}+\ldots \mathrm{BeCl}_{2}$
3) $\quad __{-} \mathrm{B}_{2} \mathrm{H}_{6}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{3} \mathrm{BO}_{3}+\ldots \mathrm{H}_{2}$

9.) $-\mathrm{CH}_{4}+$ - $_{2} \rightarrow$ _ $\mathrm{CO}_{2}+$ - $\mathrm{H}_{2} \mathrm{O}$
10.) $_\mathrm{Mg}+\ldots \mathrm{Mn}_{2} \mathrm{O}_{3} \rightarrow$ _ $\mathrm{MgO}+\ldots \mathrm{Mn}$

Balancing Equations Practice

More Balancing Equations Practice

a) $\mathrm{MnO}_{2}+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
b) $\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

More Balancing Equations Practice

e) $\mathrm{CO}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$

BrINCIHOF Brothers!

Bromine, lodine, Nitrogen, Chlorine, Hydrogen, Oxygen, Fluorine are always going to be diatomic. $\mathrm{Br}_{2} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{~F}_{2}$
f) $\mathrm{CS}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+\mathrm{S}_{2} \mathrm{Cl}_{2}$
g) $\mathrm{CH}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{HBr}$

Write and Balance the following equation
Write and Balance the following equation
Aluminum bromide plus chlorine yield aluminum chloride and bromine.

Write and Balance the following equation

- Nitrogen gas plus oxygen gas react and form dinitrogen pentoxide.
A. Potassium iodide reacts with bromine forming potassium bromide plus iodine.

Classifying Reactions

1. Helps to identify the kinds of chemical - I I reactions and to predict the products of the I chemical reactions.

- Five general kinds of reactions: I
- Synthesis
- Decomposition
- Single Displacement
- Double Displacement
- Combustion Reaction

Synthesis Reaction

:- Two or more substances (reactants)

- Combine to form only one (new) substance (product)
:- Also known as Addition

$\mathrm{Mg}+\mathrm{O}_{\mathbf{2}} \rightarrow \mathbf{M g O}$
$\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$

Decomposition $A B \rightarrow A+B$
Single displacement $\mathrm{AC}+\mathrm{B} \rightarrow \mathrm{BC}+\mathrm{A}$

Double displacement $A C+B D \rightarrow A D+B C$

```
Combustion Ex: CH
Combustion Ex: \(\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\)
```


Addition (Synthesis)

Synthesis (combination)

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}
$$

Types of reactions
Synthesis
$A+B \rightarrow A B$
(a)

Decomposition Reaction

One substance (reactant) combine forms 2 or more substances (products) $\mathrm{AB} \longrightarrow \mathrm{A}+\mathrm{B}$

oCompounds are broken down into two or more smaller compounds
$\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{\mathbf{2}} \mathrm{O}+\mathrm{CO}_{\mathbf{2}}$
$\mathrm{MClO}_{3} \rightarrow \mathbf{M C l}+\mathrm{O}_{\mathbf{2}}$

Decomposition

$$
\mathrm{AB} \rightarrow \mathrm{~A}+\mathrm{B}
$$

Single displacement

- One element and one compound (in reactants)
- Produces one element and one compound (in Products)

One element replaces another in a compound

$\mathbf{Z n}+\mathrm{CuSO}_{4}-->\mathrm{Cu}+\mathbf{Z n S O} 4$
$\mathrm{F}_{\mathbf{2}}+\mathbf{2 K I} \rightarrow \mathrm{I}_{\mathbf{2}}+\mathbf{2 K F}$

Single Displacement

Single Displacement

Double displacement

Iron + Copper Sulfate: The iron replaces the copper in the solution, turning copper sulfate into iron sulfate (FeSO4). Pure copper collects on the iron.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CaCl}_{2}----->\mathrm{CaCO}_{3}+2 \mathrm{NaCl}
$$

Combustion Reaction

Combustion

- A reaction in which a carbon compound and
oxygen burn.
- Water, carbon dioxide and energy are common product

\odot Carbon cmpd $+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+$ energy!
$\odot \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
But don't forget that ENERY is a product too (heat, light, etc)..

Let's Recap

Addition

End with only l compound
Decomposition
Start with only l compound

- Single Displacement

Each side has a single element and a compound
Double Displacement
Each side has 2 compounds
Combustion
Products will always be $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ and ENERGY

- Acid-Base Reaction

Products will always be $\mathrm{H}_{2} \mathrm{O}$ and a salt of some form

Classifying Reaction Practice

A. $\mathrm{S}_{8}+8 \mathrm{O}_{2} \rightarrow 8 \mathrm{SO}_{2}+$ energy

Synthesis
B. $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
C. $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO} 3+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

Decomposition
D. $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

Single-displacement

