Chapter 8.1-8.3
 DNA Structure \& Function

Section 8.1 DNA History

Scientists

- James \qquad \& Francis \qquad discovered the double helix shape of DNA in 1953.
- Rosalind Franklin
- Used \qquad diffraction to study the structure of DNA.
- It indicated that DNA was a \qquad .
- Alfred Hershey and Martha Chase 1952
- Studied viruses \qquad
- Concluded genetic material of virus was \qquad no \dagger \qquad .

DNA- Structure 8.2

- DNA: \qquad
\qquad .
- It's a type of \qquad
- What \qquad (genes) are made of
- DNA consists of \qquad that are arranged in a "twisted ladder" structure called a \qquad
- DNA is made up of long chains of \qquad

Nucleotides:

- Parts of a Nucleotide:

1. \qquad group
2. Sugar (called \qquad in DNA)
3. \qquad base

Double Helix:

- The backbone (outer strands) of DNA is made up of
\qquad \& \qquad .
- The inner "rungs" of DNA is made up of
\qquad -.
- There are 4 types of bases:

1. \qquad
2. \qquad
3. \qquad
4. \qquad

- Each base will \qquad with one other \qquad

Chargaff's Rules of Base-Pairing state that:

-

(A) always pairs with \qquad

- \qquad (G) always pairs with \qquad (C)
- Each pair is always \qquad in numbers.
Example: If a DNA molecule contains 20\% adenine, how much (\%) thymine should it contain?

How much (\%) cytosine \& guanine?

DNA is Complementary

- Complementary: bases on one strand match up with the bases on the other strand (A-T and G-C)
- Example: Strand 1- ATG GGC CTA

Strand 2- \qquad

- The backbone is connected by covalent bonds.
- \qquad between the bases hold the two strands of DNA together

DNA FUNCTION:

- The primary function of DNA is to
- DNA is the \qquad of an organism's \qquad .
- DNA contains your \qquad (what you look like).

Label the diagram:
Deoxyribose
Phosphate group Covalent bond Hydrogen bond Nitrogen-containing base

SECTION 8.3: DNA REPLICATION

DNA Replication

- \qquad is the process in which \qquad itself.
- Proteins () carry out the process of \qquad
- The \qquad DNA strand is used as a \qquad to build 2 identical copies of DNA.
- Replication of DNA occurs during the \qquad during the

Process of DNA Replication

Step 1:

- Enzymes \qquad the double helix.
\bigcirc \qquad - \qquad nucleotides form \qquad bonds with the template strand.
Step 2:
- DNA \qquad enzymes bond the \qquad nucleotides to the original DNA strand.
Step 3:
- Two new DNA molecules are formed, each with one \qquad strand and one
\qquad strand \rightarrow This makes DNA replication a
- Occurs at \qquad of replication along a chromosome (making it fast)
- DNA polymerase " \qquad " the new strand and \qquad any incorrect nucleotides and \qquad them with correct ones (accurate)
- DNA replication occurs in:

- Eurkaryotes: ___
- Prokaryotes: \qquad
- Prokaryotes:

Original DNA

Directions:

For each strand of DNA, show the three steps to demonstrate that you could "replicate" the DNA correctly. See the example for details if you don't recall how.

Example:
TCCTG ACCCC GCCGG GATAT CCTTC TACCT CCAAA TGTAT
Solution in two parts:
A. Fill in the complementary strand.

Original DNA: TCC TG ACCCC GCCGG GATAT CCTTC TACCT CCAAA TGTAT
Complementary: AGGAC TGGGG CGGCC CTATA GGAAG ATGGA GGTTT ACATA
B. Split the DNA and fill in the complementary strands to create two complete double helix strands.

T CCTG ACCCC GCCGG GATAT CCTTC TACCT CCAAA TGTAT (original)
AGGAC TGGGG CGGCC CTATA GGAAG ATGGA GGTTT ACATA (new)
TCCTG ACCCC GCCGG GATAT CCTTC TACCT CCAAA TGTAT (new)
AGGAC TGGGG CGGCC CTATA GGAAG ATGGA GGTTT ACATA (original) comp. from example A

1. A. Original DNA: CCTAT ATCTC TCTAT ATCTC TCATA CTGTG TGTCT CTATA Complementary DNA:
B. Make identical strands of DNA

CCTAT ATCTC TCTAT ATCTC TCATA CTGTG TGTCT CTATA (original)
\qquad (new)
\qquad (new)
\qquad (compl. From 1A)
2. A. Original DNA: CCGGA TTTTA ATTAG CTACT ATCGT ACTAC GTTGG TGCTA Complementary DNA: \qquad
B. Make identical strands of DNA

CCGGA TTTTA ATTAG CTACT ATCGT ACTAC GTTGG TGCTA (original)
\qquad (new)
\qquad (new)
\qquad (compl. from 2A)
3. A. Original DNA:TGCTG ATCGA TCGAT CAGTC AAACG CTGTT TCGAT ACTCG Complementary DNA:
B. Make identical strands of DNA

TGCTG ATCGA TCGAT CAGTC AAACG CTGTT TCGAT ACTCG (original)
\qquad (new)
\qquad (new)
\qquad (compl. from 3A)

