

Counting Atoms 3 H Coefficient: Tells us how many of that entire molecule we have Subscript: Tells us how many of that one single atom we have

Rules for balancing

- 1. Make a T-chart
- 2. Write the **correct** formulas for all the reactants and products
- 3. Count the number of atoms of each type appearing on both sides
- 4. Balance the elements one at a time by adding coefficients (the numbers in front ONLY)
- 5. Check to make sure it is balanced.

*****REMEMBER: IF YOU CHANGE A COEFFICIENT, ALL ELEMENTS IN THAT COMPOUND ARE AFFECTED.

Photosynthesis Reaction

• Carbon dioxide + water → Glucose (sugar) + oxygen

$$6CO_2 + 6 H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

• Count the atoms on each side of the equation.

C:6

O:18

H: 12

C:6

O:18

H: 12

Balancing Equations

- 1) Determine number of atoms for each element.
- 2) Pick an element that is not equal on both sides of the equation.
- 3) Add a coefficient in front of the formula with that element and adjust your counts.
- 4) Continue adding coefficients to get the same number of atoms of each element on each side.

Mg +	O ₂ →	MgO
Mg +	O ₂ →	☐ MgO

Balancing Equations

 Balance the following equation by adjusting coefficients.

$$N_2 + 3 H_2 \rightarrow 2NH_3$$

	reactants	products
Ν	2	2
Н	6	6

Balancing Equations

 Balance the following equation by adjusting coefficients.

2KCIO₃ \rightarrow 2KCI + 3O₂

	reactants	products
K	2	2
CI	2	2
0	6	6

Balancing Equations Practice

1. Mg +
$$N_2 \rightarrow Mg_3N_2$$

2.
$$P + O_2 \rightarrow P_4O_{10}$$

3. Na + $H_2O \rightarrow H_2$ + NaOH

Balancing Equations Practice

7. CO +
$$Fe_2O_3 \rightarrow Fe + CO_2$$

8.
$$CS_2 + Cl_2 \rightarrow CCl_4 + S_2Cl_2$$

9.
$$CH_4 + Br_2 \rightarrow CH_3Br + HBr$$

BrINCIHOF Brothers!

Bromine, Iodine, Nitrogen, Chlorine, Hydrogen, Oxygen, Fluorine are *always* going to be diatomic. Br₂ I_2 N_2 CI_2 H_2 O_2 F_2

A. Magnesium + Oxygen (g)→ Magnesium Oxide

Write and Balance the following equation

B. Hydrogen plus oxygen yield water.

Write and Balance the following equation

C. Aluminum bromide plus chlorine yield aluminum chloride and bromine.

Write and Balance the following equation

D. Nitrogen gas plus oxygen gas react and form dinitrogen pentoxide.

Combustion Reaction

- A reaction in which a carbon compound and oxygen burn.
- Water, carbon dioxide and energy are common product

 \odot Carbon cmpd + O₂ \rightarrow CO₂ + H₂0 + energy!

 $\odot C_2 H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2 O$

Classifying Reaction Practice

A. $S_8 + 8O_2 \rightarrow 8SO_2 + energy$

Synthesis

B. $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

Synthesis

C. $2NaHCO_3 \rightarrow Na_2CO3 + H_2O + CO_2$

Decomposition

D. $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

Single-displacement