Chemical Reactions

- It is a change in matter that produces one or more NEW SUBSTANCES with different properties

Rules for balancing

1. Make a T-chart
2. Write the correct formulas for all the reactants and products
3. Count the number of atoms of each type appearing on both sides
4. Balance the elements one at a time by adding coefficients (the numbers in front ONLY)
5.Check to make sure it is balanced.
*****REMEMBER: IF YOU CHANGE A COEFFICIENT, ALL ELEMENTS IN THAT COMPOUND ARE AFFECTED.

Photosynthesis Reaction

- Carbon dioxide + water \rightarrow Glucose (sugar) + oxygen

$$
6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}
$$

- Count the atoms on each side of the equation.

C : 6
0: 18
H: 12

C : 6
0:18
H: 12

Balancing Equations

1) Determine number of atoms for each element.
2) Pick an element that is not equal on both sides of the equation.
3) Add a cocfficient in front of the formula with that element and adjust your counts.
4) Continue adding coefficients to get the same number of atoms of each element on each side.

Balancing Equations

- Balance the following equation by adjusting coefficients.

Balancing Equations

- Balance the following equation by adjusting coefficients.

Balancing Equations Practice

7. $\mathrm{CO}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
8. $\mathrm{CS}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+\mathrm{S}_{2} \mathrm{Cl}_{2}$
9. $\mathrm{CH}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{HBr}$

Write and Balance the following equation
B. Hydrogen plus oxygen yield water.

Write and Balance the following equation
C. Aluminum bromide plus chlorine yield aluminum chloride and bromine.

Write and Balance the following equation
D. Nitrogen gas plus oxygen gas react and form dinitrogen pentoxide.

More Balancing Equations Practice

E. Potassium iodide reacts with bromine forming potassium bromide plus iodine.

Synthesis Reaction

:. \quad Two or more substances (reactants)
Combine to form only one (new) substance (product)
:- Also known as Addition

$\mathrm{Mg}+\mathrm{O}_{\mathbf{2}} \rightarrow \mathbf{M g O}$
$\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$

Decomposition Reaction

Single displacement

- One element and one compound (in reactants)
- Produces one element and one compound (in Products)

One element replaces another in a compound

$$
A C+B \rightarrow B C+A
$$

$\mathrm{Zn}+\mathrm{CuSO}_{4}-->\mathrm{Cu}+\mathrm{ZnSO}_{4}$
$\mathbf{F}_{2}+\mathbf{2 K I} \rightarrow \mathrm{I}_{\mathbf{2}}+\mathbf{2 K F}$

Double displacement

2 compounds (in reactants) produce
2 compounds (in reactants) produce
2 compounds (in products)
2 compounds (in products)

Combustion Reaction

Classifying Reaction Practice

```
A. \(\mathrm{S}_{8}+8 \mathrm{O}_{2} \rightarrow 8 \mathrm{SO}_{2}+\) energy
    Synthesis
B. \(6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}\)
    Synthesis
C. \(2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO} 3+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\)
    Decomposition
D. \(\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}\)
    Single-displacement
```

