BIOLOGY EOCT REVIEW

CELLS

Georgia Performance Standards (GPS):

- SB1. Students will analyze the nature of the relationships between structures and functions in living cells.
- a. Explain the role of cell organelles for both prokaryotic and eukaryotic cells, including the cell membrane, in maintaining homeostasis and cell reproduction.
- b.Explain how enzymes function as catalysts.
- c. Identify the function of the four major macromolecules (i.e., carbohydrates, proteins, lipids, nucleic acids).
- d.Explain the impact of water on life processes (i.e., osmosis, diffusion).
- SB3. Students will derive the relationship between single-celled and multi-celled organisms and the increasing complexity of systems.
 - a. Explain the cycling of energy through the processes of photosynthesis and respiration.

From smallest to largest...

Atoms→molecules/compounds→macromolecules

 (O_2, H_2O, CO_2)

(carbs, proteins, lipids, nucleic acids)

\rightarrow organelles \rightarrow cells \rightarrow tissues \rightarrow organs \rightarrow

(ribosomes, nucleus, mitochondria, etc)

Organ systems \rightarrow organisms \rightarrow species \rightarrow

population \rightarrow community \rightarrow ecosystem \rightarrow biome \rightarrow

biosphere

4 Major Macromolecules

Macromolecule	What is it made of? What are its building blocks?	How do we get it?	What is it used for?	Examples of how it is used in body
Proteins	Amino acid	Meat, dairy, bean products that you eat	enzymes- speed up rxns hormones- send messages thru body structural- hair, nails, skin	Amylase, insulin, hair, nails, every part of your cells!
Carbohydrates	Monosaccharides (glucose & other simple sugars)	Simple carbs- fruit Complex carbs- pasta	Short term energy use/storage	Polysaccharide- Glycogen Starch Cellulose
Lipids	Fatty acids and glycerol	Unsaturated fats- liquid @ room temp (oil) Saturated fats- solid @ room temp (steak fat)	Long term energy storage	Cholesterol, adipose tissue
Nucleic Acids	nucleotides	Eating any plant or animal that has DNA in it.	Storing genetic information & Protein synthesis	DNA, RNA

4 Major Macromolecules

Enzymes

- Proteins that speed up chemical reactions by lowering the amount of energy needed which makes the reaction happen faster- called catalysts
- If you didn't have enzymes, reactions would happen too slowly and you might die waiting for the rxn to occur.
- Enzymes are used to break down food in your body and to build new molecules & organelles.
- Enzymes are used over & over but are very SPECIFIC in the rxn they participate in.
- Enzymes can be denatured or destroyed by changes in temperature, pH or salt

Two Types of Cells

- Prokaryotic
 - No nucleus or membrane bound organelles (chloroplast, mitochondria)
 - Simple & smaller than eukaryotic
 - Ex: all bacteria

- Eukaryotic
 - Has a nucleus &
 membrane bound
 organelles
 - More complex & larger than eukaryotic
 - All cells except bacteria

Endosymbiotic Theory

- Eukaryotic cells evolved from prokaryotic cells.
- This may have occurred when prokaryotes consumed other prokaryotes and instead of digesting them, they formed a symbiotic relationship.

Difference between Plant and Animal Cells

Organelle Structure	Organelle Function	Plant, Animal, or Both?		
Nucleus	Stores DNA, controls cell processes	Both		
Nucleolus	Makes ribosomes	Both		
Ribosomes	Smallest organelle, site of protein synthesis	Both		
Endoplasmic reticulum	Long channels where ribosomes pass while they make proteins	Both		
Golgi body	Takes proteins from ribosomes, reorganizes & repackages them to leave cell	Both		
Lysosomes	Store digestive enzymes to clean up dead cell parts, bacteria, etc	Animal		
Vacuole	Stores water, waste, food, etc	Both (Plant has 1 large vacuole)		
Cell membrane	Controls what goes in & out of cell; maintains homeostasis	Both		
Mitochondria	Makes ATP from food we eat & stores ATP (energy storage molecule); site of cellular respiration	Both		
Chloroplast	Traps light and makes sugar for plant; site of photosynthesis	Plant		
Cell Wall	Outermost boundary of plant cell; gives support & protection; made of cellulose	Plant		
Centriole	Used in cell division	Animal		

How do molecules get in and out of cell?

- Cells need to be small so stuff can get in and out quick- otherwise cell would starve or enzymes needed by body would be too slow leaving cell.
- Molecules pass thru the cell membrane
- Cell membrane is selectively permeablecontrols what substances can go in & out of the cell

Structure of the Cell Membrane

- **Phospholipids-** phosphate head and 2 lipid tails that make up the majority of the cell membrane. Create a Bilayer with **hydrophilic** (water loving) heads on the outside and **hydrophobic** (water hating) tails on the inside.
- Channel protein- used in passive transport to let molecules thru.
- Carrier protein- opens and closes to let molecules thru.
- **Receptor proteins-** receive messages from the outside and sends them to the inside to create a response inside the cell.

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Diffusion

- Molecules move from high to low concentration with the concentration gradient (natural flow of molecules; like a river)
- Eventually molecules spread out evenly and reach equilibrium.

Two types of Transport thru Cell

Passive transport

- Molecules move from high to low
- Goes WITH concentration gradient
- No energy needed
- EX:
 - Diffusion
 - Facilitated Diffusion (uses protein)

Active Transport

- From low to high concentration
- Goes AGAINST concentration gradient
- Requires energy
- Ex:

- Endocytosis- bringing large molecules in

- Phagocytosis- solid
- Pinocytosis- liquid
- Exocytosis- releases
 large molecules from cell

Osmosis- diffusion of water molecules from high to low concentration

Osmosis

- Hypertonic solution-"above strength" = too much solute (salt) outside cell. Water moves to salty side.
- Hypotonic solution-"below strength" = more salt inside cell so water follows and goes into cell
- Isotonic- "equal" strength of salt and water.

Cell Energy

- Photosynthesis- how plants trap light energy and turn it into chemical energy
- Cellular Respirationhow plants & animals turn the chemical energy from plants into ATP- energy storage molecule.

EQUATION 1. PHOTOSYNTHESIS. $6 CO_2 + 6 H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$ carbon water chlorophyll sugar oxygen dioxide sunlight

EQUATION 2. RESPIRATION. $C_6H_{12}O_6 + 6O_2 - 6CO_2 + 6H_2O$ sugaroxygencarbonwaterdioxide

GENETICS

Georgia Performance Standards (GPS)

SB2. Students will analyze how biological traits are passed on to successive generations.

- a. Distinguish between DNA and RNA
- b. Explain the role of DNA in storing and transmitting cellular information.
- c. Using Mendel's laws, explain the role of meiosis in reproductive variability.
- d. Describe the relationships between changes in DNA and potential appearance of new traits including

Alterations during replication.

Insertions

Deletions

Substitutions

Mutagenic factors that can alter DNA.

High energy radiation (x-rays and ultraviolet)

Chemical

- e. Compare the advantages of sexual reproduction and asexual reproduction in different situations.
- f. Examine the use of DNA technology in forensics, medicine, and agriculture

DNA vs. RNA

- Deoxyribonucleic acid
- Double helix
- Original, complete instructions stay in nucleus
- Made up of Nucleotides
- Nucleotides made up of
 - Deoxyribose sugar
 - Phosphates
 - Nitrogen bases
 - Cytosine
 - Guanine
 - Adenine
 - Thymine

- Ribonucleic acid
- Single strand
- Copy of instructions that can leave nucleus
- Made up of Nucleotides
- Nucleotides made up of
 - Ribose sugar
 - Phosphates
 - Nitrogen bases
 - Cytosine
 - Guanine
 - Adenine
 - Uracil

RNA uses uracil when it copies DNA. This uracil molecule signifies that it is RNA trying to leave the nucleus and not DNA so RNA can leave the nucleus. Otherwise the nucleus would think the DNA was trying to leave which may be "dangerous".

Image adapted from: National Human Genome Research Institute.

Protein synthesis

Transcription

- mRNA makes a copy of segment of DNA
- mRNA leaves nucleus and attaches to ribosome in endoplasmic reticulum.

Translation

- Ribosome reads mRNA code and calls for matching amino acids
- Amino acids link together to form polypeptide chain
- Polypeptide chain goes to golgi body where it rolls into a protein and is secreted by cell or used internally.

Protein Synthesis Animation/Tutorial

PROTEIN SYNTHESIS

How does the cell know which amino acids to bring in?

- mRNA is written with letters (like a secret code) which are set up in groups of 3' s called codons.
- Ribosome reads the codons and brings in the matching amino acids
- Decipher this codon:

DNA= AGG CCC TAG RNA= UCC GGG AUC A.A.= Ser Gly Ile

First base	Second base in codon			Third base	
in codon	U	C	A	G	in codon
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	С
	Leu	Ser	—	—	A
	Leu	Ser	—	Trp	G
С	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gln	Arg	A
	Leu	Pro	Gln	Arg	G
A	lle	Thr	Asn	Ser	U
	lle	Thr	Asn	Ser	С
	lle	Thr	Lys	Λrg	Α
	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Gly	G

DNA Replication

- DNA needs to copy itself or replicate when the cell gets ready to divide.
- This is necessary so each new cell gets a copy of the DNA which are the instructions for how the cell functions.
- DNA helicase enzyme unzips the DNA and DNA polymerase enzyme attaches new nucleotides to create new strands

MITOSIS

- Cell division to make new cells when others are damaged or worn out
- Somatic cells (all body cells except gametes) go thru mitosis
- Cell starts out with full set of chromosomes (diploid-2n) and ends with full set of chromosomes (diploid-2n)
- Daughter cells are exactly like parent cell- basically clones of parent
- Human cells start out with 46 chromosomes end up with 46.

Meiosis

- Cell division to make **gametes** (sex cells)
- Cell starts out as diploid (full set of chromosomes) and ends up haploid (having half number of chromosomes)
- Needs to be haploid so when two gametes join they get the full set of chromosomes.
- Meiosis splits up chromosomes so there is random chance of mixing of DNA which promotes good genetic variation.
- Human gametes start out with 46 chromosomes and end up with 23 chromosomes
 - So when a sperm with 23 meets an egg with 23 you get a zygote with 46 chromosomes.

Asexual reproduction vs. Sexual reproduction

Asexual

- No sperm or egg are used
- Clones /identical
- No genetic variation
- Susceptible to disease
- Can reproduce quickly
- Ex: budding, binary fission

Sexual

- Sperm and egg are joined combining DNA
- Creates genetic variation/diversity
- Healthier
- Population can't reproduce as quickly b/c they have to search for a mate
- Ex: human egg (23) + human sperm (23) = zygote (46)

TYPES OF SEXUAL AND ASEXUAL REPRODUCTION

٠

ASEXUAL

- Produces diploid (2N) cells
- New cells are clones of parent cell
 - Mitosis
 - Splits into two
 - Multicellular
 - Used to make more new cells, repair
 - Humans & higher animals
 - Binary fission
 - Splits into two
 - Unicellular
 - Bacteria & protists
 - Fragmentation
 - Piece breaks off and grows into new organism
 - Multicellular animals
 - » Sponges, coral polyps, plants
 - Budding
 - New organism grows off of parent
 - Multicellular animals
 - » Sponges, coral polyps
 - Propagation
 - One plant gives rise to another
 - » Strawberry plants

- SEXUAL
 - Produces haploid (N) gametes (sperm/egg)
 - New cells are genetically varied from parent cell (due to crossing over)
 - This is why two offspring don't look exactly alike (unless identical twins)
 - Gametes are made by meiosis
 - Conjugation
 - Exchange DNA (not sperm/egg)
 - Bacteria & protists
 - Sexual
 - Separate male and females of species
 - Males must get sperm to female- do not always have a penis
 - Spawning
 - Release sperm & eggs into water where by chance they unite to form zygote
 - Sponges, jellyfish, fish
 - Hermaphrodites
 - Organisms contain both sperm and egg
 - Exchange sperm with another to fertilize eggs
 - DO NOT fertilize their own eggs (cloning- which leads to easy disease transmission)
 - Worms, lower invertebrates

Heredity Vocabulary

- **Gene-** a segment of DNA that codes for a certain trait (seed color)
- Allele- a variation of a gene (green allele, yellow allele)
- **Phenotype-** the physical description of a gene (green seed)
- **Genotype-** two alleles you inherit for a gene; represented by letters (GG, Gg, gg)
- You always get two alleles for a geneone comes from your mom, one comes from your dad
- You can pass these alleles onto your future children
- Whether the kids express the allele or not depends on if they inherit dominant or recessive alleles.

- **Dominant Allele-** masks a recessive allele (EX: G)
- **Recessive Allele-** is overpowered by dominant allele (EX: g)
- Heterozygous- one dominant one recessive allele (Gg)
 - Also called carrier or hybrid
- Homozygous dominant- two dominant alleles (GG)
 - Also called purebred
- Homozygous recessive- two recessive alleles (gg)
 - Also called purebred
- asdf

Mendelian Genetics

- Gregor Mendel- father of genetics came up with 3 laws when researching heredity:
- 1. Rule of dominance- always a dominant allele that can mask a recessive one
- 2. Law of Segregation- when gametes are made the allele pairs are separated and divided up amongst your new sperm or egg
- 3. Law of Independent Assortment- genes are inherited independently of each other; explains how alleles can skip a generation.

Law of Independent Assortment

Punnett Squares

- Be able to complete simple Punnett Squares
- Be able to determine phenotype percentages and ratios
- Be able to determine genotype percentages and ratios

Non-Mendelian Genetics

- Codominance- both alleles are dominant so both show
 - Ex: white chicken (WW) crossed with black chicken (BW) gives black and white checkered chicken (BW)
 - Occurs with blood cells: sickle cell anemia (SS), sickle cell trait (RS), normal cells (RR)
- Incomplete Dominanceneither is completely dominant so they blend to produce new phenotype
 - EX: red flower (RR) crossed with a white flower (R' R') produces a pink flower (RR')

Non-Mendelian Genetics

- Multiple Alleles- more than two alleles for a gene
 - EX: Blood types can be A, B, or O
 - Type A= AA or AO
 - Type B= BB or BO
 - Type AB = AB
 - Type O= OO
- Polygenic Traits- controlled by more than one gene on a chromosome
 - EX: skin color, eye color, bair color

BbCc × BbCc
Ova BC A BC
BBCC BC
BC BbCC BbCC BC
bc BBCc BBCc BC
BbCc BbCc BbCc BbCc
bbCe BBcc bbCc
·Bbcc
bbcs
©1999 Addison Wesley Longman, Inc.

Sex Chromosomes

- Autosomes- first 22 pairs of chromosomes
- Sex Chromosomes- last pair of chromosomes
 - If last pair are XX= girl
 - If last pair are Xy= boy
 - Females can only donate
 X's to their kids
 - Males can donate X or y to kids so he determines gender of baby
 x xx

Father's Genes

en es X

XX

Ху

Хy

Non-Mendelian Genetics

• X-Linked Traits (Sex-Linked Traits)

- "X' s" carry some traits, "y' s" can't b/c they are stumpy
- X-linked traits are passed on the X chromosome that is always donated by mom to her kids
- Boys have the trait more than girls b/c "y" chromosome cannot carry a dominant trait to mask a recessive one (remember it is too stumpy)
- Girls are usually carriers
- Boys can NEVER be carriers b/c they only get one allele- either the dominant or the recessive.

Punnett squares for the sex-linked trait haemophilia

Pedigrees

70

(c) 2007, Michael A. Kahn, DDS

• Show inheritance patterns of traits

 Sex-linked pedigree of royal family afflicted with hemophilia

Chromosomal Disorders

- Nondisjunctionchromosomes didn't separate correctly during meiosis. Gamete gets too many or not enough chromosomes
 - Down syndrome (Trisomy 21)- too many chromosome #21.

DNA mutations

- <u>Frameshift mutations-</u> Insertions, deletions, translocations that shift the entire reading frame & cause major mutations
- <u>Point mutations-</u> substitutions of one letter that may not have an affect on phenotype

Genetic Disorders

- Most of these can be detected with an amniocentesis followed by a karyotyping of the person's chromosomes.
- Sex-Linked Disorders- present on sex chromosomes of mom and/or dad.
 - Colorblindness
 - Hemophilia- blood clotting disorder
- Dominant Allele Disorders- if the allele for this disease is present, the person will have the disease/disorder
 - Achondroplasia (dwarfism)
 - Huntington's disease- degenerative nerve/muscle disorder shows up later in life
- Recessive Allele Disorders- must have two copies of the disease allele to have the disease/disorder.
 - Albinism- lack pigment in skin, eyes, hair, etc.
 - Tay Sach's disease- develops in toddler's, progressive degenerative nerve/muscle disorder
 - Phenylketonuria (PKU)- can't drink milk or other items that contain phenylalanine
 - Cystic fibrosis- develop thick mucus in lungs & stomach

Technology

• DNA Fingerprints

- Gel electrophoresis- push
 DNA thru gel using electricity
- Determine suspect at scene of crime, paternity, missing persons
- Who left the semen sample-Chris or Randall?

- Genetic Engineering
 - Cut human DNA to remove desired trait, splice into bacterial or host DNA (plasmid), reinsert into bacteria or host, which will produce desired trait
 - Also called
 recombinant
 DNA, gene
 splicing
 - Make insulin,
 GM foods,
 cure some
 diseases

EVOLUTION

Georgia Performance Standards (GPS)

SB5 Students will evaluate the role of natural selection in the development of the theory of evolution.

- a. Trace the history of the theory.
- b. Explain the history of life in terms of biodiversity, ancestry, and the rates of evolution.
- c. Explain how fossil and biochemical evidence support the theory.
- d. Relate natural selection to changes in organisms.
- e. Recognize the role of evolution to biological resistance (pesticide and antibiotic resistance).

Theory of Evolution by Natural Selection

- Lamarck-
 - Theory of Use/Disuse- if you don't use a part you will lose it.
 - Inheritance of Acquired
 Traits- an organism
 obtains a trait during life
 (large muscles) so
 offspring are born with
 that trait
 - No longer accepted theory

- Darwin
 - Descent w/modificationorganisms come from a common ancestor
 - Natural Selection
 - All organisms produce more offspring than can survive.
 - All offspring are genetically varied (may not always be obvious based on phenotype)
 - Variations in genes enable some offspring to outcompete others
 - Those with negative traits die, taking those to the grave. Those with positive traits survive, reproduce, and pass on to offspring.
 - Eventually the entire POPULATION evolves- changes gradually over time.

Types of Natural Selection

- **Directional-** population moves from one extreme to the other
- **Disruptive/Diversifying** extreme phenotypes are favored
 - Light and dark are favored, medium stick out
- **Stabilizing-** average phenotypes are favored
 - Plants- short plants can't compete for sunlight so they die, tall plants can't withstand winds so they die, this leaves medium height trees

In peppered moths there are two major phenotypes- light color and dark color

Before the Industrial Revolution:

Light moths blend in, dark moths stick out, dark get eaten
Dark phenotype gets eaten so not very common so the dark allele is not frequent

After the Industrial Revolution:

Dark moths blend in, light moths stick out, light get eaten
Light phenotype gets eaten so not very common so the light allele becomes less frequent

This change in the moth population over time is EVOLUTION of a population.

Phenotypes of Moths

Notice the peak of the blue line is over the light phenotype

Notice the peak of the red line is over the dark phenotype

This shows that the population evolved from light being more common before Industrial revolution to dark after.

This type of natural selection is called **Directional selection**

Patterns of Evolution

- 1. Adaptive Radiation (divergent evolution)
 - Many species evolve from a common ancestor
 - EX: Darwin's finches
- 2. Coevolution
 - 2 species evolve in response to each other
 - EX: fast cheetahs vs. faster gazelles
- 3. Convergent Evolution
 - 2 different species evolve to have the same trait b/c they live in similar environments
 - EX: Madagascar aye-aye & New Guinea striped opossum both have elongated middle finger for digging bugs out of trees but live in different parts of the world.

Rates of Evolution

1. Gradualism

- Small, gradual steps
- Traits remain unchanged for millions of years
- 2. Punctuated Equilibrium
 - Abrupt transitions
 - Seen in fossil record
 - Rapid spurts of genetic change caused divergence quickly

1. Disease Resistance

- Bacteria are becoming resistant to antibiotics b/c of the misuse of antibiotics. Bacteria are building resistance.
- Insects are also building resistance to pesticides due to overuse & improper use of the chemicals.
- Industrial melanism- peppered moths changed due to pollution.
- Generally, organisms that are more general in their needs survive. A species that requires a specific food source or habitat will be less able to change.
- 2. Artificial Selection
- Genetically modified foods
- Selective breeding in dogs & plants (crops) <u>http://www.pbs.org/wgbh/evolution/educator</u> <u>s/lessons/lesson6/act1.html</u>

What are some current trends in evolution?

1. The spray kills almost all the files.

Among the few survivors is one that happens to be less susceptible to the poison - a mutant.

 After a few more sprayings, these resistant flies, descendants of the original mutant, now out-

number the rest.

In the next generation its

descendants constitute more

of the population.

The insecticide itself has selected out the resistant insects.

And now almost the entire population is immune.

Evidence for Evolution

- Fossils- compare fossils to look for evidence of change over time
- Biogeography- compare locations of organisms to find common ancestors
- Homology
 - Homologous structurescomparing structural similarities
 - Molecular similarities- comparing DNA btwn organisms
 - Vestigial structures- parts no longer have a fxn (appendix, wisdom teeth) but may have in an ancestor
 - Embryological evidencecomparing embryo development to see relationships

millions of years age

Cladograms/Phylogenetic Trees

- 1. Show <u>evolutionary</u> relationships
- 2. Like a family tree

Cladograms/Phylogentic Trees

• Which two animals are more closely related?

Chimp & Bonobo

• Which two animals are least closely related?

Gibbon & Human

Classification key/Dichotomous key-

- 1. Type of tool used to identify <u>unknown</u> organisms.
- 2. Use a series of steps to identify an organism starting with its most general traits & ending with its most specific traits.
- How to read one:
- 1.Read 1st two statements. Which ever is correct about your organism, follow the instructions. Keep doing this until you reach a scientific name.
- 2. See example on next slide

Dichotomous Key to Representative Birds

1. a. The beak is relatively long and slender.....Certhidea

b. The beak is relatively stout and heavygo to 2

2. a. The bottom surface of the lower beak is flat and straight Geospiza

- b. The bottom surface of the lower beak is curvedgo to 3
- 3. a. The lower edge of the upper beak has a distinct bend Camarhynchus
 - b. The lower edge of the upper beak is mostly flatPlatyspiza

Bird W	Geospiza
Bird X	Platyspiza
Bird Y	Certhidea
Bird Z	Camarhynchus

Scientific Naming Rules

Binomial Nomenclature

- 1. Written in Latin- old language/never changes
- 2. Italicized when <u>typed</u>; underlined when <u>written</u>
- 3. First word is genus name- capitalized
- 4. Second word is <u>species</u> name- lowercase
- Species name can represent:
 - Color- ex: *Acer rubrum* is a red maple
 - Who discovered it- ex: *Friula wallacii* is a spider discovered by Wallace
 - Place where discovered- ex: *Aplysia californica* is a California Sea Hare

ECOLOGY

Georgia Performance Standards (GPS)

SB4. Students will assess the dependence of all organisms on one another and the flow of energy and matter within their ecosystems.

- a. Investigate the relationships among organisms, populations, communities, ecosystems, and biomes.
- b. Explain the flow of matter and energy through ecosystems by

Arranging components of a food chain according to energy flow. Comparing the quantity of energy in the steps of an energy pyramid Explaining the need for cycling of major nutrients (C, O, H, N, P).

- c. Relate environmental conditions to successional changes in ecosystems.
- d. Assess and explain human activities that influence and modify the environment such as global warming, population growth, pesticide use, and water and power consumption.
- e. Relate plant adaptations, including tropisms, to the ability to survive stressful environmental conditions. (in Organism section)
- f. Relate animal adaptations, including behaviors, to the ability to survive stressful environmental conditions. (in Organism section)

Levels of Organization in Ecology

- **Population-** group of same species in an area (ex: all grey squirrels)
- **Community-** group of many different populations (ex: grey squirrels, hawks, ants, pigeons, students)
- Ecosystem- interaction btwn organisms and the environment (ex: how squirrels use water, how plants remove nutrients from soil)
- Biomes- group of similar ecosystems; have similar climates, plants, animals (ex: desert, rainforest, grasslands)
- **Biosphere-** all of the biomes, plants, animals, on the planet

Food Chains and Webs

- Food chains show one simple relationship in an ecosystem
- Arrows show TRANSFER OF ENERGY!

 Food webs show many (but not all) relationships in an ecosystem

Trophic Levels

- Every organism occupies a trophic level in a food chain/web
- Producers- make their own food (autotrophs); bottom of food chain
- **Primary consumers-** herbivores that get energy from producer
- Secondary consumer- carnivore that gets energy from herbivore
- Tertiary consumer- carnivore or omnivore that gets energy from secondary consumer; top of the food chain

Decomposers vs. Scavengers

- Secrete enzymes onto food and absorb nutrients thru cell wall
- Recycle nutrients back to soil
- EX: bacteria, fungi

- Sometimes steal food from others b/c they are usually too weak to kill themselves
- Eat with mouth

ants

• EX: vultures, worms,

Ecological Pyramids

- Energy pyramids- show that energy decreases as you go up food chain
- Biomass pyramidsshow that mass of available food/organisms decrease as you go up food chain

Biogeochemical cycles

- Carbon, Nitrogen, Oxygen, Sulfur, Water all must be recycled so new organisms can grow
- Basic steps:
 - Plants absorb nutrient from soil (nitrogen, sulfur) or air (carbon, oxygen)
 - Animal eats plant
 - Animal dies, defecates, respires and bacteria return nutrient back to soil or air

Succession

- Primary- happens in an environment for the first time; pioneer species= lichens & moss; ex: after new volcanic island formed
- Secondary- happens in an environment after a disturbance; pioneer species = weeds/grass; ex: after forest fire, farm left fallow, pond fills in and becomes forest.

Population Growth

- Most populations grow exponentially when there's plenty of food, water shelter (1800-1850 on this graph)
- Eventually those limiting factors start to dwindle and population growth slows and levels off. (1850-1925)
- Population might oscillate around carrying capacity- # of organisms that can be supported by an area.

Year

What is the carrying capacity of this population? 1.5 million

BIOME	CLIMATE	PLANT ADAPTATIONS	ANIMAL ADAPTATIONS
Tropical rainforest	Warm all year round Gets most precip.	Layered forest Broad, big leaves to capture sunlight in understory; variety of seed adaptations	Arboreal (live in trees); long prehensile tails, gliders; insects, monkeys
Desert	High temperatures Low precipitation	Succulents- store water; spines for protection and decreased transpiration; cacti, aloe	Large ears to dissipate heat; burrowers; nocturnal; insects, reptiles, coyotes, jack rabbits
Grasslands Savanna- Africa Prairie- U.S.	High temperatures Moderate precipitation Savanna's get more rainfall than prairies Frequent fires	Tall grasses; a few trees near sources of water	Grazing animals Feed at different levels to avoid competition Burrowing animals
Temperate Deciduous Forest	Moderate temperature Moderate precipitation	Deciduous trees- lose leaves in winter to conserve water Oaks, hickory, maple, sweetgum	Hibernate in winter Dull colors to blend in with tree trunks or dead leaves in fall/winter Deer, raccoons, squirrels, snakes
Taiga/Coniferous forest	Long, cold winters Short cool summers	Evergreen/coniferous trees- wax on needles prevents water loss so they keep leaves all year; thick bark; pyramid shaped tree to slough snow; shallow roots	Broad hooves/feet to walk on snow; thick fur/blubber; moose, elk, wolverines, insects
Tundra	Long cold winters Short cool summers	Small plants to prevent water loss, grow close to ground to get maximum sun/warmth; lichens, moss, small flowering plants	Broad hooves/ feet to walk on snow; thick fur/blubber; hibernate; polar bears, caribou/reindeer, seals

POLLUTANT/ ENVIRONMENTAL PROBLEM	CAUSE OF POLLUTANT	EFFECT OF POLLUTANT	
Sulfur dioxide (SO ₂)	Burning coal in power plants and diesel fuel in trucks	Increases air pollution which can cause respiratory problems; causes acid rain	
Carbon dioxide (CO2)	Deforestation- fewer trees to remove CO ₂ ; increasing population = increasing use of fossil fuels	Increases greenhouse gases in atmosphere which trap heat and lead to global climate change	
Nitrogen (N₂)	Fertilizers used on yards, golf courses; animal waste from livestock (cows, pigs); raw sewage from broken pipes	N ₂ flows into lakes/ponds, algae grow, die, decompose, oxygen levels in water decrease due to too many bacteria, fish die due to lack of oxygen. This process is called EUTROPHICATION	
Ozone depletion	Use of ChloroFluoroCarbons (CFCs) in spray cans (now banned) and CFCs in refrigerants in air conditioners (still used)	Thinning of the ozone layer in the stratosphere over Antarctica; increase in UV rays reaching Earth; increased skin cancer rates	
Global warming	Increased use of fossil fuels (mostly attributed to CO ₂ and methane release) Intensifies the greenhouse effect (Greenhouse effect is a good thing b/c otherwise it would be too cold- but too much of a good thing can be bad!)	Sea levels rise due to icecaps/glaciers melting; flooding along coast; climate change in some areas- dry areas become wet, wet become dry; will affect ability to grow crops; animal migration/hibernation is disrupted	

ORGANISMS

Georgia Performance Standards (GPS)

SB3 Students will derive the relationship between single-celled and multi-celled organisms and the increasing complexity of systems.

- a. Explain the cycling of energy through the processes of photosynthesis and respiration.
- b. Compare how structures and function vary between the six kingdoms
- c. Examine the evolutionary basis of modern classification systems (archaebacteria, eubacteria, protists, fungi, plants, and animals).
- d. Compare and contrast viruses with living organisms.

	PROKARYOTES (no nucleus or membrane bound organelles)		EUKARYOTES (have a nucleus and membrane bound organelles)			
Domain	DOMAIN ARCHAEA	DOMAIN BACTERIA	DOMAIN EUKARYA			
Kingdom	Kingdom Archaea	Kingdom Eubacteria	K. Protista	K. Plantae	K. Fungi	K. Animalia
Characteristics	Extreme bacteria	Common bacteria	Mostly unicellular	multicellular	mostly Multicellul ar	Multicellular
	Prefer salty, hot, or high pH environment	Prefer normal warm, moist environment	Cell walls made of cellulose in some	Cell walls made of cellulose	Cell walls made of chitin	No cell walls
			Autotrophic or heterotrophic	autotrophic	Hetero- trophic	heterotrophic

Viruses

- Ex: chicken pox, herpes, HIV, cold/flu
- Not considered living b/c they do not grow, develop, need energy, must have a host cell to reproduce.
- Do have DNA or RNA but b/c they do not have ALL characteristics of life they are not considered living.
- FYI: You CANNOT take an antibiotic to get rid of a virus. When you contract a virus you become immune thanks to antibodies created to fight future infection.
- Antibiotics work on bacteria only.

BACTERIA

- Prokaryotic
- Smallest, simplest of all living things
- Prefer warm, moist environments
- Heterotrophic & some autotrophic
- Reproduction- conjugation & binary fission
- Importance: decomposers, recycle nutrients to soil, flavorings in food, nitrogen fixers, help digest food
- Most can be killed by antibiotics which weaken their cell walls and cause them to burst.
- Ex: Salmonella, streptococcus, E. coli

KINGDOM PROTISTA

General traits of all protists	Eukaryotic, mostly unicellular, some have cell walls, some autotrophic, some heterotrophic				
Protists are classified into 3 groups	Animal-like protists	Plant-like protists	Fungus-like protists		
Classified based on	Method of movement	Color of chlorophyll	Method not mentioned		
Types	Sarcodines move with pseudopods ex: amoeba	Eulgena are both animal- like & plant-like but more plant-like (green)	Slime molds		
	Ciliates move with cilia ex: paramecium	Green algae found in freshwater	Downy mildews & water molds- caused potato blight in Ireland		
	Flagellates move with flagella Ex: trychonympha	Diatoms used as abrasives			
	Sporozoans don't move ex: plasmodium (causes malaria)	Dinoflagellates- cause red tide that poisons shellfish			

REPRODUCTION IN SIMPLE ORGANISMS (bacteria & protists)

 BINARY FISSION- nucleic acid (DNA) is copied and cell divides (asexual)

 CONJUGATION- Nucleic acids (DNA) are exchanged (sexual)

Animal-like protist

Plant-like protist

KINGDOM PLANTAE

General Characteristics	Eukaryotic, multicellular, cell walls w/cellulose, autotrophic			
TWO MAIN GROUPS OF PLANTS:				
1. Nonvascular- no xylem or phloem, typically small, no true roots, stems, leaves, need moisture for reproduction (ferns, mosses)	2. Vascular- have xylem (carries water) and phloem (carries sugar) vessels for movement of material thru plant (trees, flowers, pine trees, grass, etc.)			
Nonvascular ferns & mosses need water to transport sperm to egg so found in moist, shady areas Use alternation of generations for reproduction (oscillate btwn sexual & asexual reproduction)	 Two main groups of Vascular Plants: 1. Gymnosperm- produces seeds in cones (ex: pine tree) 2. Angiosperm- produces seeds in flower (ex: deciduous trees, roses) 			
	Roots- take up nutrients & water from soil. Store sugar during the winter			
	Stems- contain xylem & phloem, pathway to connect roots to leaves.			
PARTS OF A VASCULAR PLANT	Leaves- contain chloroplasts to collect sunlight for photosynthesis. Can be modified into spines (cactus), needles (pine needle) to prevent water loss or vines, tendrils for climbing			
	Flowers- contain reproductive organs to make pollen & egg, colorful or have smell to attract pollinators.			

KINGDOM FUNGI

General Characteristics		Eukaryotic, mostly multicellular, cell walls made of chitin, heterotrophic			
Types	Terrestrial mold	Club fungi	Sac fungi	Imperfect fungi	
Examples	Bread mold	Mush- rooms	Truffles, morels	penicillium	
Importance of fungi:	Penicillin is made from penicillium mold- used as an antibiotic; cause disease; decomposers; source of food (mushrooms); used to make food (yeast to make bread)				

KINGDOM ANIMALIA

General characteristics:	Eukaryotic, multicellular, no cell walls, heterotrophic					
TWO MAJOR GROUPS						
Invertebrates: no backbone, no true spinal cord (most have a nerve cord to react to stimuli)	Chordates: has a backbone/spinal cord					

INVERTEBRATES								
	Porifera (sponges)	Cnidarian (jellyfish, coral, sea anemone)	Flatworm (planarian)	Roundwrm (ascaris)	Annelids (segmentd worms)	Mollusks (snails, squid, clams)	Echino- derms (starfish)	Arthropod (insects, crustacean s)
Body shape	Central Carly Count							Sector
Feeding	Filter feeder	Nemato- cyst to sting prey; one opening	Dig. Enzymes dissolve food use straw like tube to suck up food; one opening	2 body openings- mouth & anus; some parasitic	2 body openings; crop (stores food) gizzard (grinds)	2 body openings; snails- tongue to scrape algae; clams- filter; squid- beak	2 body openings; eject stomach	2 body openings; various mouth parts
Reproduc- tion	Fragmenta- tion; budding; hermaphrodi tes	Sexual- male & females; budding	Hermaphrodi tes	Sexual- males & females	Hermaphrodi tes	Snail- hermaphro- dites Clams & squid- separate sexes	Regenera- tion of body parts; separate sexes	Separate sexes- male & female
Special Traits	Spicules- needle-like parts for body support	Tentacles; statocyst- cells help maintain balance	Pharynx- straw like tube that sucks up food; eyespots	Parasitic- cause disease	Segmented bodies; leeches are parasitic	Gastropods- snails Bivalves- clams Cephalopods - squid	Spiny skin	Variety of adaptations Chitin in exoskeleton

VERTEBRATES

	Class Agnatha (lamprey)	Class Chondrich- thyes (sharks)	Class Osteichthyes (bony fish)	Class Amphibia (frogs/toads)	Class Reptilia (lizards, snakes)	Class Aves (birds)	Class Mammalia (mammals)
General traits	Slimy skin, no scales, no jaws	Small scales, rough skin, biting jaws	Distinct scales, biting jaws	Moist, smooth skin used for breathing	Dry, smooth scaly skin	Skin covered in feathers, feet have scales	Skin has hair, mammary glands
Skeleton	Cartilage	Cartilage	Bone	Bone	Bone	Bone	Bone
Respiratory	Gill slits	Gills	Gills with operculum (gill covering)	Breathe thru skin, also have gills as tadpoles & lungs as adults	Lungs	Lungs with air sacs for extra oxygen storage	Lungs with diaphragm muscle for taking in large amts. of air
Heart chambers	2 chambered heart	2 chambered heart	2 chambered heart	3 chambered heart	3 chambered heart	4 chambered heart (sep. oxygen rich and oxygen poor blood	4 chambered heart
Reproductio n	Separate sexes	Separate sexes	Separate sexes; some spawn	Separate sexes; need water to keep eggs moist	Separate sexes; lay amniotic egg on land	Separate sexes; lay amniotic egg in nests	Separate sexes; have pouch or placenta for growing baby
Special Adaptations	Parasites of other fish	Have lateral line sys. For detecting prey	Have swim bladder for floating in water	Tadpoles live in water, adults on land	Amniotic egg keeps baby moist so no water needs	Eat constantly to get energy for flight	Variety of adaptations

PLANT "BEHAVIORS"

- Tropisms- plant movements
 - Positive- moves toward the stimulus
 - Negative- moves away from the stimulus
- Phototropism- response to light
- **Geotropism-** response to gravity
- Hydrotropism- response to water
- Thigmotropism- response to touch

ANIMAL BEHAVIORS

- Innate- instinctive behavior- born • with this; sea turtle babies move toward ocean when they hatch
- Learned- not born with this; gorillas • can learn to communicate w/computers
- Hibernation- body systems slow • during cold months to conserve energy
- Migration- move with rainfall to keep • up with food/water source; wildebeest migration across savanna in Africa
- Territoriality- defend a • territory/mates
- Estivation- hibernate during dry • season

"Good'

