

Normal Force

-Normal: the component perpendicular to the surface of contact

- Written as F_{N}

Applied Force

-Applied: a force that is applied to an object by a person or another object.

Tension Force

-Tension: the force in a rope, string, cable, or wire when it is pulled tight by forces acting on opposite ends.

- Written as F_{T}
- Written as $\mathrm{F}_{\text {app }}$

Determining Net Force

- In order to determine net force, we look at a free body diagram.
-If the vectors on the diagram are pointing in opposite directions, we subtract the forces.
-If the vectors are going in the same direction, we add the forces.

Free Body Diagram

1. Draw a box to represent your object
2. Draw arrows pointing in the direction that a force is pulling or pushing the object
3. Add the amount of force to your arrows to demonstrate the amount of force.

A box is being pulled up by a
 rope.

- Do we add or subtract?
- Subtract! The arrows are going in opposite directions.
- What is the net force acting on this object?
- 400N up!
- Are these forces balanced?
- No.

Problem \#2: What would be the unknown
forces acting on this object given the net
force?

Problem \#4

Solve for D\&E

Word Problems (try drawing a picture if you need help)

6. Frankie and Caitlin are trying to move a small four-wheeler out of their garage. Frankie pushes with a frce of 40 N towards the outside. Caitlin pulls with a force of 20 N towards the outside. What is the net force on the four-wheeler?

$$
\begin{aligned}
& \text { Net force }=- \\
& \text { is this force balanced or unbalanced? balanced }
\end{aligned} \stackrel{60 \mathrm{~N}}{4} \rightarrow \rightarrow 20 \mathrm{~N}
$$

Kathryn pulls back with a force of 20N.
Who is pulling who? Kathryn PUlls
Net force $=5 \mathrm{~N}$, Right
Is this force balanced or unbalanced? Unbalanced
7. Jennifer just went out and bought a new television to replace her old broken down one. She pushes the new television across her living room floor. She pushes with 18 N of force. What is the net force on the television?

9. Look at the picture below. The arrow shows the direction of movement of the two bighorn sheep.

Which sheep is pushing with more force?
The one on the left
is this force balanced or unbalanced?
unbalanced

The Force of Friction

- FRICTION- A force that opposes motion between 2 surfaces in contact with one another
- Causes a negative acceleration

Depends upon:

1. Kind of surface
2. Force pressing two surfaces together

Why would friction cause brakes pads to ware down in cars?

- Friction between brake pads and the rotors causes the materials that makes up the pad to rub off.

What is this unbalanced force that acts on an object in motion?

Friction!
Types of friction:

1. Static friction-between surfaces that are stationary (at rest). Initial friction when moving an object
2. Sliding friction-opposes the motion of two surfaces sliding past each other. Ex. Ice skating
3. Rolling friction-the force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. Causes resistance. Ex. Bowling

Friction and Motion

- Friction is necessary for many everyday tasks to work correctly.
- Ex: walking, holding cellphone
- Reducing friction: add lubricants or other low-friction materials.
- Ex: motor oil, wax and grease

- Increasing friction: make surface rougher

Ex: sand on icy roads, textured batting gloves

Ch. 12.1 Newton's Laws

Sir Isaac Newton (1642-1727)

- Described motion and force in 3 laws
- Newton's First Law- inertia
- Newton's Second Law- (Force= m x a)
- Newton's Third Law- action and reaction

Velocity vs Time Graph

	Inertia	
Newton's First Law	"ent	nemom
Inertia	6	$b=0$
Inertia	$=$	

\square The tendency of an object to remain at rest or in motion until acted upon by an external force.
\square If object is moving, it keeps moving at same speed \& in same direction unless unbalanced force acts on it
\square So, an object at rest will stay at rest, and an object in motion will remain in motion unless acted by an outside force.

Newton's Second Law

- Newton's Second Law: net force acting on object causes object to accelerate in direction of force
- Larger mass requires greater force smaller
 mass to achieve the same acceleration
- Acceleration depends on the mass of the object and the unbalanced force applied
- more mass, harder to accelerate
more force, faster acceleration

Inertia Depends on Mass

- The more mass an object has, the harder it is to get it to move or to stop!
- This is why seatbelts save people they prevent you from maintaining a speed of 60-70 miles an hour when the car suddenly stops!

Newton's Second law Examples

Calculating Newton's Second Law:

Calculating Newton's Second Law:

- Formula: F = mxa

- Unit for Force: Newton (N)
- Equal the force needed to change the velocity of a 1 kg mass by $1 \mathrm{~m} / \mathrm{s}^{2}$

```
F = Force (N)
m}=\mathrm{ mass (kg)
a= acceleration (m/s}\mp@subsup{\textrm{s}}{}{2}
```


What's the formula when looking for force?

What's the formula when looking for acceleration?

What's the formula when looking for mass?

$1 \mathrm{~N}=1 \mathrm{~kg} \times 1 \mathrm{~m} / \mathrm{s}^{2}$

Problem: Newton's Second Law

1. Zookeepers lift a stretcher that holds a sedated lion. The total mass of the lion and stretcher is 175 kg , and the upward acceleration of the lion and stretcher is $0.657 \mathrm{~m} / \mathrm{s}^{2}$. What force is needed to produce this acceleration of the lion and the stretcher?

$$
m=175 \mathrm{~kg}
$$

$a=0.657 \mathrm{~m} / \mathrm{s}^{2}$
$F=$?
Write the Equation for Newton's second law.
force $=$ mass \times acceleration

Setup the equation by inserting

 the known value$$
\begin{aligned}
& F=175 \mathrm{~kg} \times 0.657 \mathrm{~m} / \mathrm{s}^{2} \\
& F=115 \mathrm{~kg} \times \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

Solve

$$
F=115 \mathrm{~N}
$$

Practice Problem:

2. What net force is needed to accelerate a $1.6 \times 10^{3} \mathrm{~kg}$ automobile forward at $2.0 \mathrm{~m} / \mathrm{s}^{2}$?

$$
\begin{array}{lll}
m=1.6 \times 10^{3} \mathrm{~kg} & \mathrm{~F}=\mathrm{ma} & \\
a=2.0 \mathrm{~m} / \mathrm{s}^{2} & \mathrm{~F}=\left(1.6 \times 10^{3} \mathrm{~kg}\right)\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right) & \mathrm{F}=3.2 \times 10^{3} \mathrm{~N} \\
\mathrm{~F}=? &
\end{array}
$$

3. A baseball accelerates downward at $9.8 \mathrm{~m} / \mathrm{s}^{2}$. If the gravitational force is the only force acting on the baseball and is 14 N , what is the baseball's mass?

$$
\begin{array}{lll}
m=? & m=F / a & \\
a=9.8 \mathrm{~m} / \mathrm{s} 2 & M=\left(14 \mathrm{~N} / 9.8 \mathrm{~m} / \mathrm{s}^{2}\right) & \mathrm{m}=1.4 \mathrm{~kg} \\
\mathrm{~F}=14 \mathrm{~N} & &
\end{array}
$$

Practice Problem:

4. A sailboat and its crew have a combined mass of 655 kg . If a net force of 895 N is pushing the sailboat forward, what is the sailboat's acceleration?

$m=655$	$a=F / m$
kg	$\mathrm{a}=895 \mathrm{~N} / 655 \mathrm{~kg}$
$\mathrm{a}=?$	$\mathrm{~A}=1.37 \mathrm{~m} / \mathrm{s}^{2}$ in the direction of the force
$\mathrm{F}=895 \mathrm{~N}$	

5. The net forward force on the propeller of a 3.2 kg model airplane is 7.0 N . What is the acceleration of the airplane?

$$
\begin{array}{ll}
m=3.2 \mathrm{~kg} & a=F / \mathrm{m} \\
a=? & a=7.0 \mathrm{~N} \text { forward } / 3.2 \mathrm{k} \\
\mathrm{~F}=7.0 \mathrm{~N} & a=2.2 \mathrm{~m} / \mathrm{s}^{2} \text { forward }
\end{array}
$$

Newton's $2^{\text {nd }}$ Law Practice Problems

4. The tallest man-made structure at present is the Warszawa Radio mast in Warsaw, Poland. This radio mast rises 646 m above the ground, nearly 200 m more than the Sears Tower in Chicago. Suppose a worker at the top of the Warszzawa Radio mast accidentally knocks a tool off the tower. If the force acting on it is 3.6 N and
6 its acceleration is $9.8 \mathrm{~m} / \mathrm{s}^{2}$, what is the tool's mass?
u E s s
5. The whale shark is the largest of all fish and can have the mass of three adult elephants. Suppose that a crane is lifting a whale shark into a tank for delivery to an aquarium. The crane must exert an unbalanced force of $2.5 \times 10^{4} \mathrm{~N}$ to life the shark from rest. If the shark's acceleration equals $1.25 \mathrm{~m} / \mathrm{s}^{2}$, what is the shark's mass?
G u E s

Newton's $2^{\text {nd }}$ Law Practice Problems
A freight train slows down as it approaches a train yard. If a force of $-3.8 \times 10^{6} \mathrm{~N}$ is required to provide a acceleration of $0.33 \mathrm{~m} / \mathrm{s}^{2}$. what is the train's mass?
s

In drag racing, acceleration is more important than speed, and therefore drag racers are designed to provide
In drag racing, acceleration is more important than speed, and therefore drag racers are designed to provide
How large is the unbalanced force acting on the racer? $\underset{U}{\text { E }}$ s s

A $5.22 \times 10^{7} \mathrm{~kg}$ luxury cruise ship is moving at its top speed as it comes into port. The ship then undergoes an
acceleration equal to $0.0 .357 \mathrm{~m} / \mathrm{s}^{2}$ until it comes to rest tat its anchorage. How large must the unbalanced force
acting on the ship be in order to bring the ship to rest at the proper location?
u

Newton's $2^{\text {nd }}$ Law Practice Problems

9. The giant sequoia redwood trees of the Sierra Nevada mountains in California are said never to die from old age. Instead, an old tree dies when its shallow roots become loosened and the tree fails over. Removing a dead mature redwood from a forest is no easy feat, as the tree can have a mass of nearly $2.0 \times 10^{\circ} \mathrm{kg}$. Suppose
redwood with this mass is lifted with an overall upward acceleration of $0.85 \mathrm{~m} / \mathrm{s}^{2}$. How large is the unbalanced force lifting the tree?
G

10. A house is lifted from its foundation onto a truck for relocation. The unbalanced force lifting the house is 2850 N . This force causes the house to move from rest to an upward speed of $0.15 \mathrm{~m} / \mathrm{s}$ in 5.0 s . What is the
${ }_{G} \quad \underset{\text { mass of the house? (Hint: } 2 \text { problems) }}{ }$ E S s

Explain the force use throughout the

 motion of the object represented by the red line.

Time (seconds)

- Which needs a greater force to obtain the same acceleration?

Newton's Third Law (Action-Reaction)

- When one object exerts a force on a second object, the second object exerts an equal but opposite force on the first.
For every force, there is an equal and opposite force
- For every action there is an equal and opposite reaction

Newton's Third Law

- Problem:

- How can a horse pull a cart if the cart
 is pulling back on the horse with an equal but opposite force?
- Aren't these "balanced forces" resulting in no acceleration?

Newton's Third Law

- Explanation:

- forces are equal and opposite but act on different objects
-they are not "balanced forces"
-the movement of the horse depends on the forces acting on the horse

Action and Reaction

-When a force is applied in nature, a reaction force occurs at the same time.
-When you jump on a trampoline, for example, you exert a downward force on the trampoline.

- Simultaneously, the trampoline exerts an equal force upward, sending you high into the air.

GET READY FOR YOUR

 QUIZ

Force of Gravity

Why do objects fall to the ground

Law of Universal Gravitation

 when dropped?- Gravity: force of attraction between any two objects in the universe
- Acts on all objects with mass
- All objects in the universe attract each other through the force of gravity.

The strength of the force depends on the mass of the objects and the distance

- increases as...
mass increases
distance decreases

Mass

If the mass of either of the objects increases, the gravitational force between them increases

Distance

If the objects are closer together, the gravitational force between them increases

Gravity

- Who experiences more gravity - the astronaut or the politician? Politician, WHY?
- Which exerts more gravity - the Earth or the moon? Earth, why?
The further from earth you travel the less

Weight

- The gravitational force exerted on an object is called the object's weight
- Larger mass, larger weight
- Different planets different values of gravity (g)
- so you would weigh different amounts

Gravitational Field of Earth

Mass vs Weight

- Mass is the amount of matter in an object
- Since an object's force of gravity depends on its mass, the more mass an object has, the stronger the force of gravity it exerts.

MASS
always the same
(kg)

WEIGHT depends on gravity (N)

Free fall must be in avacum

- When the force of gravity is the only force acting on an object
- If there was no air resistance, all objects would fall at the same speed
Why do astronauts in orbit seem weightless?
They are in free fall. Objects in the shuttle seem to be floating because they are all falling with the same acceleration. Acceleration is much slower than on earth.

BOTH THE FEATHER AND BALL fall at the same speed AT THE SAME
IN A VACUUM.

Free Fall Video

Terminal velocity

terminal velocity - highest speed reached by a falling object.

- Force of gravity is constant
- Eventually gravity will balance with air resistance

- air resistance increases as you speed up until the force is equal
- Equal forces, no acceleration
- constant velocity
terminal velocity
Terminal Velocity

Calculating Weight

Weight $=$ mass x free-fall acceleration

W = m x g
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
For the EOC: $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$
Unit of weight is (N) Newtons
W : weight (\mathbf{N})
m : mass (kg)
g : acceleration due to gravity $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

What does the formula look like
when solving for mass?
What does the formula look like
$m=W / g$
$g=W / m$

Practice Problem: Weight

$W=m \times g_{3}$

1. Jimmy has a mass of 37.5 kilograms here on earth. What is his weight?

$W=?$	$W=m \times g$	$W=37.5 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$	$W=367.5 \mathrm{~N}$
$\mathrm{~m}=37.5 \mathrm{~kg}$			
$\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$		$W=368 \mathrm{~N}$	

2. What is the weight of a person with a mass of 72 kg on Earth?
$W=$?
$\begin{aligned} & \mathrm{m}=72 \mathrm{~kg} \\ & \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\end{aligned} \quad \mathrm{~W}=\mathrm{m} \times \mathrm{g} \quad \mathrm{W}=72 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~W}=705.6 \mathrm{~N}$

Check for understanding

Practice Problem: Weight

3. A boy weighs 400 N . What is his mass?

- The Moon has $1 / 6$ the gravity on Earth, which is approximately $10 \mathrm{~m} / \mathrm{s}^{2}$. If something has a mass of 60 kg ,

$$
\begin{array}{lll}
\mathrm{W}=400 \mathrm{~N} & \mathrm{~m}=\mathrm{W} / \mathrm{g} & \\
\mathrm{~m}=? & \mathrm{~m}=41 \mathrm{~kg} \\
\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} & \mathrm{~m}=400 \mathrm{~N} / 9.8 \mathrm{~m} / \mathrm{s}^{2} &
\end{array}
$$

what will be its approximate weight on the moon?
a. 0.03 kg
b. 100 kg
c. 37.5 N d. 100 N

4. An astronaut has a mass of 100 kg and has a weight of 370 N on Mars. What is the gravitational strength on Mars?

$$
\begin{array}{ll}
\mathrm{W}=370 \mathrm{~N} & \mathrm{~g}=\mathrm{W} / \mathrm{m} \\
\mathrm{~m}=100 \mathrm{~kg} &
\end{array}
$$

$\mathrm{g}=370 \mathrm{~N} / 100 \mathrm{~kg}$

1. What is the difference between mass and weight?
2. How are weight and mass related?

Solve the following weight and mass problems. Use the GUESS steps to show all of your work
4. Juan weighs 850 N on Earth. where appropriate.
3. Amber, a volley ball player, has a mass of 60 kg .
a. What is Amber's weight on Earth, where the acceleration due to gravity (g) is ~ 10 $\mathrm{m} / \mathrm{s}^{2}$?
b. What is Amber's mass on Jupiter, where the acceleration due to gravity (g) is 25.0 $\mathrm{m} / \mathrm{s}^{2}$?
c. What is Amber's weight, in Newton's, on Jupiter?

The acceleration due to gravity on different places in the Solar System is given in the table

5. The mass of a 10 kg suitcase is greatest on
6. Show calculations to determine if a 25 kg Marrian or a 45 kg Venetian has more inertia. (Hint: Inertia depends on
7. If you were in a sitting position, on which location would it be most difficult to stand up? Why?

Review

- Is the following statement true or false?
- An astronaut has less mass on the moon since the moon exerts a weaker gravitational force.
- False! Mass does not depend on gravity, weight does. The astronaut has less weight on the moon.

Review

TRUE or FALSE:

An astronaut on the Space Shuttle is weightless because there is no gravity in space.

FALSE!

There is gravity which is causing the Shuttle to free-fall towards the Earth. She feels weightless because she's free-falling at the same rate but she is not without weight. There is a very small amount of gravity in space.

Newton's 3 Laws Activity

Match the situation to the appropriate Newton's Law. Explain how you identified which Law it was. If there is a calculation to be done then complete this in the box provided.

Situation	Newton's Law \& explanation
If you use the same amount of force to push a car and d turuck then the cor wil movere acceleration than the the truck.	
	$2^{\text {nd }}$

Math Review
 $$
F=m \times a \quad a=\frac{V_{f}-V_{i}}{t}
$$

1. A car is lifted from the ground onto a semi-truck for delivery to it's new owner. The mass of the car is 770 kg . The car is lifted from rest to an upward speed of $1.2 \mathrm{~m} / \mathrm{s}$ less than 4.0 s . What forces was used to lift the car? $=-231 \mathrm{~N}$

$V_{f}=1.2 \mathrm{~m} / \mathrm{s} \quad a=$?
 $a=\frac{1.2 \mathrm{~m} / \mathrm{s}-0^{\mathrm{m}}}{4.0 \mathrm{~s}}$ $t=4,0_{5}$
$v_{i}=0^{m} / \mathrm{s}$

\section*{$m=\frac{\pi}{a}$ Fill in the missing Data
 | Net Force N | Mass
 Kilograms | Acceleration $\mathrm{m} / \mathrm{s} / \mathrm{s}$ |
| :---: | :---: | :---: |
| 10 | 12 | $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ |
| $\checkmark 20$ | $\checkmark 2$ | $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ |
| - 20 | ? 4 | $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ |
| 10 | ${ }^{*}$ | $2 ? \mathrm{~m} / \mathrm{s} / \mathrm{s}$ |
| 10 | 1 | $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ |

If mass remains constant, doubling the acceleration, doubles the force. If force remains constant, doubling the mass, halves the acceleration.

Math Review: Determine the Net Force

Mr. Smith and his wife were trying to move their new chair. Mr. Smith pulls with a force of 30 N while Mrs. Smith pushes with a force of 25 N in the same direction. What is the net force?

