

- object's atoms or molecules
- The degree of "hotness" or "coldness" of an object
- •What makes something hot?
- •Particles that make up matter are in constant motion
- •They have kinetic energy
- •When you heat something the particles move faster

So, what kind of energy does temperature measure?

Specific Heat

- The amount of energy required to change the temperature of substance.
- Identifies type of conductor.

Substance	c (J/kg∙K)	Substance	c (J/kg∙K)
Water (liquid)	4,186	Copper	385
Ethanol (liquid)	2,440	Iron	449
Ammonia (gas)	2,060	Silver	234
Steam	1,870	Mercury	140
Aluminum	897	Gold	129
Carbon (graphite)	709	Lead	129

- Water has a high specific heat of 4186 $J/kg\;K$
- Metals have a low specific heat

Understanding Specific Heat

$Q = m x \triangle T x C$

As mass, Temperature, or specific heat increases, the energy required also increases.

As mass, Temperature, or specific heat decreases, the energy required also decreases.

Practice Problems: Specific Heat

1. How much energy must be transferred as heat to 200 kg of water in a bathtub to raise the water's temperature from 25 ° C to 37 ° C?

Q

Δ

Δ

Q = 4186 x 200 kg x 12 k

(J/kg•K)

385 449

234

140

129

129

J/kg•K)

385 449

234

140 129 129

$Q = cm\Delta T$	Q= 10,000,000 J or 1.0 x 10 ⁷ J			
∆ <i>T</i> =37 ° C−25 ° C	Substance	c (J/kg∙K)	Substance	
∆ <i>T=</i> 12 K	Water (liquid)	4,186	Copper	Γ
m= 200 kg	Ethanol (liquid)	2,440	Iron	Γ
	Ammonia (gas)	2,060	Silver	Γ
c= 4,186 J/kg x K	Steam	1,870	Mercury	Γ
0 - 1	Aluminum	897	Gold	Γ
$\mathbf{Q} = \mathbf{\hat{z}}$	Carbon (graphite)	709	Lead	Γ

Practice Problems: Specific Heat

2. How much heat does it take to change the temperature of 3 kg of water by 75 K?

$Q = 4186 \times 3 \text{ kg} \times 75 \text{ k}$

 $\Omega = 900000 \text{ J or } 9.0 \times 10^5 \text{ J}$

 $Q = cm\Delta T$ Δ*T=* 75 K m= 3 kg c= 4,186 J/kg x K

Q = ?

Substance	c (J/kg∙K)	Substance	c (J/kg∙K)
Water (liquid)	4,186	Copper	385
Ethanol (liquid)	2,440	Iron	449
Ammonia (gas)	2,060	Silver	234
Steam	1,870	Mercury	140
Aluminum	897	Gold	129
Carbon (graphite)	709	Lead	129

Practice Problems: Specific Heat

3. In order to make tea, 322,000 J of energy were added to 10 kg of water. What was the temperature change of water?

∆ <i>T= Q/(cm)</i> Q = <i>322, 000 J</i>	∆ <i>T=</i> 322,000 J/ (4,186 J/kg*K x 10 kg) ∆ <i>T= 7.7</i> K			
m= 10 kg	Substance	c (J/kg∙K)	Substance	C
III- TO Kg	Water (liquid)	4,186	Copper	
c= 4,186 J/kg x K	Ethanol (liquid)	2,440	Iron	
.,	Ammonia (gas)	2,060	Silver	
$\Delta T = ?$	Steam	1,870	Mercury	
	Aluminum	897	Gold	
	Carbon (graphite)	709	Lead	

Practice Problems: Specific Heat

4. How much energy is needed to increase the temperature of 0.755 kg of iron from 283 K to 403 K?

$Q = cm\Delta T$	Q = 449 x 0.755 kg x 120 k		
∆ <i>T</i> = 403 K −283 K	<mark>Q = 40,700 J</mark>		
∆ <i>T=</i> 120 K	Substance	c (J/kg∙K)	
m= 0.755 kg	Water (liquid)	4,186	
III- 0.755 Kg	Ethanol (liquid)	2,440	
c= 449 .1/kg x K	Ammonia (gas)	2,060	
0- 440 0/ kg x k	Steam	1,870	
Q = ?	Aluminum	897	
	Carbon (graphite)	709	

Substance	c (J/kg∙K)	Substance	େ (J/kg∙K)
Water (liquid)	4,186	Copper	385
Ethanol (liquid)	2,440	Iron	449
Ammonia (gas)	2,060	Silver	234
Steam	1,870	Mercury	140
Aluminum	897	Gold	129
Carbon (graphite)	709	Lead	129

14.2 Energy Transfer

Convection

Conduction

Heat can be transferred 3 different ways:

- 1. Conduction
- 2. Convection
- 3. Radiation

Energy Transfer: Convection

- Transferring energy by moving fluids
- Liquids and gases are fluids
- When heated they expand, become less dense
- They rise, replaced by cooler denser fluids
- Make a circular flow called a <u>convection</u> current

Remember:Hot-RisesCold-Falls→ More Dense

Energy Transfer: Radiation

Emission experiment

Energy transferred by

electromagnetic waves

Four containers were filled with warm water. Which container would have the warmest water after ten minutes?

The <u>shiny metal</u> container would be the warmest after ten minutes because its shiny surface reflects heat <u>radiation</u> back into the container so less is lost. The <u>dull black</u> container would be the coolest because it is the best at <u>emitting</u> heat radiation.

Absorption experiment Four containers were placed equidistant from a heater. Which container would have the warmest water after ten minutes? Image: Container would have the warmest water after ten minutes? Image: Container would have the warmest water after ten minutes Image: Container would have the warmest water after ten minutes Image: Container would have the warmest after ten minutes because its surface absorbs heat radiation the best. The shiny metal container would be the coolest because it is the poorest at _absorbing_ heat radiation.

4. Which is the best surface for reflecting heat radiation?

- A.) Shiny white
- B. Dull white
- C. Shiny black
- D. Dull black

5. Which is the best surface for absorbing heat radiation?

- A. Shiny white
- B. Dull white
- C. Shiny black
- D. Dull black

Chapter 3.2 Changes of State What happens when a substance changes from one state of matter to another? What happens to mass and energy during physical and chemical changes?

Temperature vs. Time

Adding energy either raises T or changes state, not both at the same time.

Energy and Changes of State The identity of a substance does not change during a change in state The ability to change or move matter As you add energy to a liquid, the temperature goes up separating molecules Some changes of state require energy Melting, evaporation and sublimation

