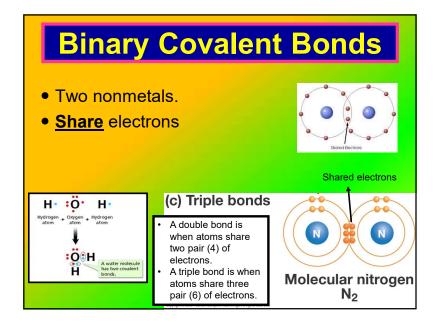


Writing Binary Ionic Formulas

	1. sodium	chloride	2.	magnesi	um oxide	3.	3. potassium sulfide					
1	Na	CI	1	Mg	0	_ 1	к	S				
2	Na ⁺¹	CI ⁻¹	2	Mg +2	O -2	_7	K ⁺¹	S -2				
1	3 <u>Na 1</u>		3	Mg ²	2 ²	_3	K1	S ²				
4	V Na	CI	4	Mg	0	4	K ₂	S				
	5. NaCl			Mg	JO	5	K₂S					



Rules for Naming Ions

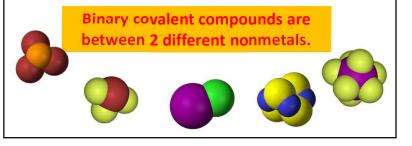
Write the name of each of the ions.

sulfur: <u>sulfide</u>	lithium: <u>lithium</u>
nitrogen: <u>nitride</u>	bromine: <u>bromide</u>
potassium: <u>potassium</u>	chlorine: <u>chloride</u>
oxygen: <u>oxide</u>	hydrogen: <u>hydrogen (+), hydride (-</u>

Name the fo	ollowing lons						
1. NaF	2. MgO						
sodium fluoride	magnesium oxide						
3. SrCl ₂	4. Li ₂ S						
strontium chloride	lithium sulfide						
5. CaO	6. KI						
calcium oxide	potassium iodide						
	1. NaF sodium fluoride 3. SrCl ₂ strontium chloride 5. CaO						

Properties of Covalent Compunds

- Weaker bonds
- Low melting and boiling points
- Do NOT conduct electricity when in solution
 - Generally don't dissolve in water.
- Generally gases or liquids at room temperature


4/26/2018

Covalent Bonds																		
There are 7 elements that exist in nature as <i>diatomic</i> molecules. What elements exist as diatomic molecules														s?				
H ₂ , N ₂ , O ₂ , F ₂ , Cl ₂ , Br ₂ , I ₂																		
														He				
Li	Be		ВС												Ne			
Na	Mg	Al Si P										S		Ar				
к	Са	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se		Kr	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe	
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt										

Binary Covalent Bonds

Binary Covalent Compounds

What does binary mean? Binary means 2.

Naming Covalent Bonds

Prefix Number To show the • 1 mono correct ratio of di 2 elements, we use 3 tri prefixes. tetra 4 Remove the -o or • penta 5 a from a prefix 6 hexa hepta 7 before adding it

alone.

octa 8 element. Leave -i 9 nona 10 deca

Naming Covalent Bonds

How would you write each of the prefixes in front of oxide? mono- monoxide di- dioxide tri- trioxide tetra- tetroxide penta- pentoxide hexa- hexoxide hepta- heptoxide octa- octoxide nona- <u>nonoxide</u> deca- decoxide

Naming Binary Covalent Bonds

Step 1: Write the name of the first nonmetal.

Step 2: Write the name of the second nonmetal changing its ending to *-ide*.

Step 3: Add prefixes to specify how many of each element are present.

divitegen teto

 N_2O_4

Covalent Bonds

Rules for Using Prefixes

Prefixes are only for BINARY COVALENT compounds.
 Prefixes are only for BINARY COVALENT compounds.
 Prefix mono- is never used on the first element of a binary covalent compound. It is assumed that there is only 1.
 Example: CO₂ is carbon dioxide, and not-monocarbon dioxide.

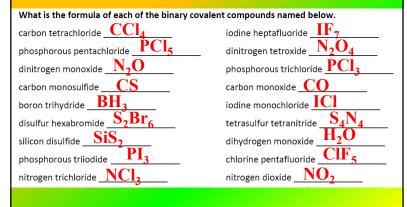
Rule 3: Remove the -o or -a from a prefix before adding it to oxide.

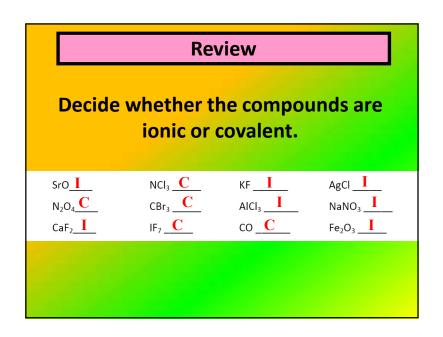
Example: CO is carbon monoxide, and not-carbon monoxide.

Name the binary covalent compounds

- co2: carbon dioxide
- cs2: carbon disulfide
- PBr₃: phosphorous tribromide
- PBrs: phosphorous pentabromide
- P2S5: diphosphorous pentasulfide
- N₂S: dinitrogen monosulfide
- sis2: silicon disulfide
- NBr₃: nitrogen tribromide
- N₂Cl₄: dinitrogen tetrachloride

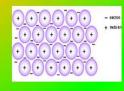
Writing Covalent Bonds formulas

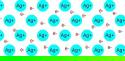

Because of the prefixes, it is very easy to go from the name of a binary covalent compound to its formula.

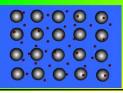

Step 1: Write the symbol of the first nonmetal and the subscript that matches the prefix.
Step 2: Write the symbol of the second nonmetal and the subscript that matches the prefix.

dinitrogen tetrafluoride N F N₂F₄

Covalent Bonds


Write the formulas of the binary covalent compounds





Metallic Bonds

- The bonding between atoms within metals.
- The sharing of many free electrons.
 - Sea of electrons
- Metals are flexible and conduct electric current well
 - Their atoms and electrons can move freely throughout a metal's packed structure.

