

Magnets

<u>Magnet</u> – any material that attracts iron and materials that contain iron

- <u>Magnetism</u> the attraction or repulsion of magnetic materials
- Magnets attract or repel other magnets.

 Today, the word magnetism refers to the properties and interactions of magnets.

Common metals affected by magnetism are <u>iron, nickel, and cobalt</u>

Magnetic Fields

- A magnet is surrounded by a magnetic field.
- A <u>magnetic field</u> exerts a force on other magnets and objects made of magnetic materials.
- The <u>magnetic field</u> is strongest close to the magnet and weaker far away.

A magnetic field also has a direction & illustrated by arrows.

Magnetic Fields

 magnetic field lines – the lines that map out the magnetic field around a magnet

Magnetic field lines spread out from one pole, curve around the magnet, and return to the other pole forming a <u>closed loop</u>.

Earth as a Magnet

Magnetic poles of the Earth are different from the geographic poles of the Earth

- the North Magnetic Pole is located near the geographic South Pole
- the South Magnetic Pole is located near the geographic North Pole

Electromagnetism

- Electric current must produce a magnetic field around the wire, and the direction of the field changes with the direction of the current.
- <u>Electromagnetism</u> relationship between electricity and magnetism

Electromagnetism

When an electric current is passed through a coil of wire wrapped around a metal core, a very strong magnetic field is produced. This is called an <u>electromagnet.</u>

The strength depends on the number of turns in the coil, the amount of current, and the size of the iron core.

YOU CAN MAKE AN ELECTROMAGNET

Electromagnets can be turned <u>on</u> and <u>off</u> You can make an electromagnet by wrapping a <u>wire</u> around a piece of <u>iron</u> and sending a <u>current</u> through the wire with a battery.

Electromagnetism

• The magnetic field inside the solenoid with the iron core can be more than 1,000 times greater than the field inside the solenoid without the iron core.

Electromagnetism

Properties of Electromagnets

- Electromagnets are temporary magnets because the magnetic field is present only when current is flowing in the solenoid.
- The strength of the magnetic field increases:

• by increasing the current passing through the wire.

Electromagnetic Induction

The process of inducing a current by moving a magnetic field through a wire coil without touching it.

Causes charges to move within the wire.

Electromagnetic Induction

Generators

- <u>electric generator</u> a device that converts mechanical energy into electrical energy
- A generator uses motion in a magnetic field to produce an electric current

