Chapter 11.1-11.2 Motion

Displacement vs Distance

For each set, create a scenario in which an object moves with the following displacement, distance, and move requirements. Your scenario may be written or drawn. Have your partner check your scenario.

<u>Scenario #1</u>	<u>Scenario #2</u>	
 Distance = 150 meters 	Distance = 200 meters	
 Displacement = 25 meters 	 Displacement = 150 meters 	
 Minimum of two moves 	Minimum of three moves	
Scenario #3	Scenario #4	
Distance = 280 meters	Distance = 525 meters	
 Displacement = 0 meters 	 Displacement = 10 meters 	
 Minimum of three moves 	Minimum of four moves	
 Two moves are in the same direction 	Two moves are in the same direction	
	Two moves are in opposite directions	

Think about it!!!!!!! Explain why knowing the velocity of an airplane is more important to a traveler than knowing only the airplane's speed.

<text><list-item><list-item><list-item><section-header>

7. Metal stakes are sometimes placed in glaciers to help measure a glacier's movement. For several days in 1936, Alaska's Black Rapids glacier surged as swiftly as 89 m per day down the valley. Find the glacier's velocity in meters per second (be sure to include the direction of motion).

8. Find the velocity in meters per second of a swimmer who swims exactly 110 m toward the shore in 72 s.

9. A baseball is pitched with a speed of 35 m/s. How long does it take the ball to travel 18.4 m from the pitcher's mound to home plate?

10. Find the velocity in meters per second of a baseball thrown 38 m from third base to first base in 1.7 s.

Practice Pro				Acceleration P	ractice
1. A skydiver acc	elerates from 20	m/s to 40 m/	s in 2	2. Natalie accelerates her ska	ateboard alo
seconds. What is	the skydiver's a	verage acceler	ation?	in 2.5 s. Find her average acc	celeration.
Givens Unknown	Equation (rearranged to solve for unknown)		Solve (include the correct unit with your answer)	Final speed (V_f)= 4.0 m/s Initial speed (V_i) = 0 m/s a Time=2.5s a = ?	= <u>4.0 m/s -</u> 2.5 s
$V_{f} = 40 \text{ m/s}$ $V_{i} = 20 \text{ m/s}$ t = 2 sec $a = ?$	a= <u>(V_f) - (V_i)</u> time	a= <u>40m/s - 20 m/s</u> 2s a= <u>20 m/s</u> 2s	a= 10m/s ²	3. A turtle swimming in a str After 4.0s, its speed is 0.80 m $V_f = 0.80 \text{ m/s}$ $V_i = 0.50 \text{ m/s}$ Time= 4.0 s a = ?	
				4. Haley's car accelerates at a her car to speed up from 14.3	
	1.	-		$V_f = 19.6 \text{ m/s}$ $V_i = 14.3 \text{ m/s}$ $t = \Delta V$ Time= ? $a = 1.2 \text{ m/s}^2$	t= <u>19.6 r</u>

Motion Concepts

Susan ran around the track four times for a distance of 1 mile in 6 minutes. Note: She started and stopped at the same point. Someone yelled, "Way to hustle, Susan! That's great speed. But, your displacement is zero!"

A group of friends meet at the front entrance of the mall. They spend the next 2 hours walking around the mall. One of the friends' wrist monitors says they walked a distance of 4.2 miles. When they return to the front entrance of the mall, their displacement is zero.

** What is the difference between distance and displacement?

Motion Concepts				
	Speed	<u>Velocity</u>		
Susan (1 mile in 6 min)	0.167 mile/minute	0 mile/minute around the track		
David	55 mph	55 mph North		
Jaguar 70 mph		70 mph toward his prey		
Elephant	25 mph	25 mph out of the jungle		
Space-X Rocket	7.9 km/s	7.9 km/s away from Earth		

** What is the difference between speed and velocity?