Chapter 11.1-11.2 Motion

Observing Motion

- Motion- an object's change in position relative to a reference point.

Frame of Reference

- Frame of reference- a system for specifying the precise location of objects in space and time.
- Object that you assume is fixed in place

What do you use as a frame of reference?

Displacement

- Displacement- the change in position of an object.
- Always includes direction
- In the diagram:
- yellow line =distance
- black arrow = displacement

Displacement vs Distance

For each set, create a scenario in which an object moves with the following displacement, distance, and move requirements. Your scenario may be written or drawn. Have your partner check your scenario.

Scenario \#1	Scenario \#2
- Distance $=150$ meters - Displacement $=25$ meters - Minimum of two moves	- Distance $=200$ meters - Displacement $=150$ meters - Minimum of three moves
Scenario \#3 - Distance $=280$ meters - Displacement $=0$ meters - Minimum of three moves - Two moves are in the same direction	Scenario \#4 - Distance $=525$ meters - Displacement $=10$ meters - Minimum of four moves - Two moves are in the same direction - Two moves are in opposite directions

1. A guy rides his horse for a couple of hours. When he is finished what is his total displacement?

Displacement vs Distance

Two soccer players, X and Y , are kicking a ball back and forth to each other.

The table below shows the distance and direction the ball moves after each of four kicks.

Kick	Player	Distance and Direction
1	X	5 m right
2	Y	4 m left
3	X	6 m right
4	Y	5 m left

1. What is the balls displacement?
$5 m+6 m$ to the right $=11 m$ to the right $11 m-9 m=2 m$
$4 \mathrm{~m}+5 \mathrm{~m}$ to left $=9 \mathrm{~m}$ to the left
2. What is the balls total distance traveled? $5 m+4 m+6 m+5 m=20 m$

Speed

- To describe motion you discuss speed
-Speed is the distance an object travels per unit of time

1. Constant speed-A moving object that doesn't change it's speed.
2. Average speed-total distance traveled per total time it took.
-Speed is usually NOT CONSTANT

Constant speed or average speed?

1. Track Race
2. Walking with a friend
3. Hiking up and down a hill

Calculating Speed

- To calculate its speed you divide the distance it travels by the time it travels
- Speed (S) = distance traveled (d) / the amount of time it took (\dagger).

$$
\mathrm{S}=\underline{\mathrm{d}}
$$

Units for speed

- Depends, but will always be a distance unit / a time unit - Cars: mi/h
- Jets: km/h
- Snails: cm/s
- Falling objects m/s

Calculating speed Problems

- If I travel 100 kilometer in one hour then I have a speed of...
- 100 km/h
- If I travel 1 meter in 1 second then I have a speed of....
- 1 m/s
- If a runner travels 100 meters in 10 seconds what was his average speed?
> $10 \mathrm{~m} / \mathrm{s}$

Speed $=\frac{\text { Distance }}{\text { Time }}$
You have to rearrange the formula
Formulas for the other pieces
Distance $=$ speed \times time
Time $=\frac{\text { Distance }}{\text { Speed }}$

Practice Problems

- 1. A car race is 500 km long. It takes the winner 2.5 hours to complete it. How fast was he going?

$$
\mathrm{S}=\frac{500 \mathrm{~km}}{2.5 \mathrm{hours}} \quad \mathrm{~S}=200 \mathrm{~km} / \mathrm{hour}
$$

- 2. It is 320 km to Las Vegas. If you average $80 \mathrm{~km} / \mathrm{hr}$, how long will it take you to get there?

$$
\mathrm{t}=\frac{320 \mathrm{~km}}{80 \mathrm{~km} / \mathrm{hr}} \quad \mathrm{t}=4 \text { hours }
$$

- 3. You are going on a trip. You average $80 \mathrm{~km} / \mathrm{hr}$ for 6 hours. How far did you go?

Velocity

Formula: Velocity = Distance with a direction/Time
Velocity= Displacement/Time

- Velocity - The distance an object travels in a certain period of time in a specific direction.
- May be + or -
- It is more precise for describing motion
- Example:
- An airplane moving North at 500 mph
- A missile moving towards you at $200 \mathrm{~m} / \mathrm{s}$

$$
100 \mathrm{~km} / \mathrm{hr} \text { Eastward }
$$

Velocity	How would the cheetahs velocity change?
Practice Problems:	

1. Young male cheetah covered 100 meters east in 7.19
seconds in a timed run. What is his velocity?
$V=$
$D=$
$V=d / t$
$\mathrm{V}=100 \mathrm{~m} / 7.19 \mathrm{~s}$
$13.9 \mathrm{~m} / \mathrm{s}$ east
$\mathrm{T}=$
2. It took 3.5 hours for a train to ravel the distance between two cities at a velocity of $120 \mathrm{~km} / \mathrm{hr}$. How many kilometers lie between the two cities?
$\mathrm{V}=$
$D=v \times t$
$\mathrm{D}=120 \mathrm{~km} / \mathrm{hr} \times 3.5 \mathrm{hr}$
420 km
3. What is the speed of a skater who travels a distance of 210 m in a time of 10 seconds?
4. What is the speed in m / s of a skater who travels a distance of 210 m in a time of 30 seconds?
5. How far can a person run in 10 minutes at a speed of $260 \mathrm{~m} / \mathrm{min}$?
6. Metal stakes are sometimes placed in glaciers to help measure a glacier's movement. For several days in 1936, Alaska's Black Rapids glacier surged as swiftly as 89 m per day down the valley. Find the glacier's velocity in meters per second (be sure to include the direction of motion).
7. Find the velocity in meters per second of a swimmer who swims exactly 110 m toward the shore in 72 s .
8. A baseball is pitched with a speed of $35 \mathrm{~m} / \mathrm{s}$. How long does it take the ball to travel 18.4 m from the pitcher's mound to home plate?
9. Find the velocity in meters per second of a baseball thrown 38 m from third base to first base in 1.7 s .

Velocity= Distance/Time

It took the rider 3 hours to check on his entire land.

Note: The figure is not drawn to scale What is his velocity?

What is the difference between speed and velocity?

Both describe how fast motion is happening. Velocity gives a direction (+/-) as well.

Write a brief story to go along with this distance-time graph.

Question

- What does the slope of a distance vs. time graph show you about the motion of an object?
- It tells you the SPEED

How does this graph display speed?
The object is moving at a constant speed.

How do you know?
The line is moving up at a constant slope

Distance vs. Time Graphs

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad=\frac{\text { change in distance }}{\text { change in time }}$

Use the slope equation to calculate the slope of each graph.

$$
\left.\begin{array}{rl}
A= & \text { Slope }= \\
\text { Slope }=\frac{30 \mathrm{yrd}-10 \mathrm{yrd}}{4 \mathrm{~s} \mathrm{~s} \mathrm{~d}} \\
4 \mathrm{~s}
\end{array}\right] \begin{gathered}
\text { Slope }=5 \mathrm{yrd} / \mathrm{s} \\
\text { B Slope }=\frac{20 \mathrm{yrd}-10 \mathrm{yrd}}{4 \mathrm{~s}-0 \mathrm{~s}} \\
\text { Slope }=\frac{10 \mathrm{yrd}}{4 \mathrm{~s}} \\
\text { Slope }=2.5 \mathrm{yrd} / \mathrm{s}
\end{gathered}
$$

Distance vs Time Graph Motion

Slope of distance-Time graph = velocity over that interval of time

Slope is zero
avelocity is zero (objectat rest)

Slope is positive avelocity is constant. positive

Slope is negative avelocity is constant, negative

Slope is curve -velocity is not constant (object accelerating)

The steeper the slope, the higher the speed (value of velocity)

How do you figure out average speed?

- Use very $1^{\text {st }}$ point and Last point on the graph.
- Why are these graphs different?
- How was the motion different?

Acceleration

- Any change in velocity is acceleration, even if the speed of the object remains the same.
- Acceleration - the rate at which velocity changes
-Can be an:
$>$ Increase in speed
-Decrease in speed
-Change in direction

If an object is moving in a straight line
- You can calculate acceleration, by substrate the difference between final speed and initial speed. Then divide by time
> Units of acceleration: $\mathrm{m} / \mathrm{s}^{2}$
Acceleration $=\underline{\text { Final Speed }\left(\mathbb{V}_{f}\right)-\operatorname{Initial} \text { Speed }\left(V_{i}\right)}$
Time

$$
a=\frac{\left(V_{f}\right)-\left(V_{i}\right)}{\operatorname{Timo}^{2}}
$$

$$
a=\frac{\Delta v}{t}
$$

Calculating Acceleration

- Lets practice

Practice Problem:

1. A skydiver accelerates from $20 \mathrm{~m} / \mathrm{s}$ to $40 \mathrm{~m} / \mathrm{s}$ in 2 seconds. What is the skydiver's average acceleration?

Acceleration Practice Problems

2. Natalie accelerates her skateboard along a straight path from $0 \mathrm{~m} / \mathrm{s}$ to $4.0 \mathrm{~m} / \mathrm{s}$ in 2.5 s . Find her average acceleration.
```
Final speed (Vf)=4.0 m/s
Initial speed (V }\mp@subsup{V}{i}{})=0\textrm{m}/\textrm{s}\quada=4.0\textrm{m}/\textrm{s}-0\textrm{m}/\textrm{s
Time=2.5s
```

$\mathrm{a}=$?
3. A turtle swimming in a straight line toward shore has a speed of $0.50 \mathrm{~m} / \mathrm{s}$.
After 4.0 s , its speed is $0.80 \mathrm{~m} / \mathrm{s}$. What is the turtle's average acceleration?
$\mathrm{V}_{\mathrm{f}}=0.80 \mathrm{~m} / \mathrm{s}$
$\begin{array}{lll}\mathrm{V}_{\mathrm{f}}=0.80 \mathrm{~m} / \mathrm{s} & \\ \mathrm{V}_{\mathrm{i}}=0.50 \mathrm{~m} / \mathrm{s} & \mathrm{a}=\frac{0.80 \mathrm{~m} / \mathrm{s}-0.50 \mathrm{~m} / \mathrm{s}}{4.0 \mathrm{~s}} & \mathrm{a}=0.075 \mathrm{~m} / \mathrm{s}^{2} \\ \text { Time }=4.0 \mathrm{~s} & & \end{array}$
$\mathrm{a}=$?
4. Haley's car accelerates at an average rate of $1.2 \mathrm{~m} / \mathrm{s}^{2}$. How long will it take
her car to speed up from $14.3 \mathrm{~m} / \mathrm{s}$ to $19.6 \mathrm{~m} / \mathrm{s}$?
$V_{f}=19.6 \mathrm{~m} / \mathrm{s}$
$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=14.3 \mathrm{~m} / \mathrm{s} \\ & \text { Time }=\text { ? }\end{aligned} \quad \mathrm{t}=\underline{\Delta \mathrm{V}} \mathrm{a} \quad \mathrm{t}=\underline{19.6 \mathrm{~m} / \mathrm{s}-14.3 \mathrm{~m} / \mathrm{s}} \quad \mathrm{t}=4.42 \mathrm{~s}$
$\begin{array}{lll}\text { Time }=? \\ \mathrm{a}=1.2 \mathrm{~m} / \mathrm{s}^{2} & \mathrm{a} & 1.2 \mathrm{~m} / \mathrm{s}^{2}\end{array}$
$a=1.2 \mathrm{~m} / \mathrm{s}^{2}$
5. Tom is driving down I-75. He notices a police officer and slows down from 81 m / s to $62 \mathrm{~m} / \mathrm{s}$ in 5.0 s . Calculate his acceleration.

| $\mathrm{V}_{\mathrm{i}}=81 \mathrm{~m} / \mathrm{s}$ |
| :--- | :--- | :--- |
| $\mathrm{T}=5.0 \mathrm{~s}$ |$\quad \mathrm{a}=\frac{62 \mathrm{~m} / \mathrm{s}-81 \mathrm{~m} / \mathrm{s}}{5.0 \mathrm{~s}} \quad \mathrm{a}=\frac{-19 \mathrm{~m} / \mathrm{s}}{5.0 \mathrm{~s}} \quad \mathrm{a}=-3.8 \mathrm{~m} / \mathrm{s}^{2}$

6. A car travels at a constant velocity of $15.1 \mathrm{~m} / \mathrm{s}$ westward and then speeds up with a steady acceleration of $6.2 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the car's speed after accelerating for 8.0 s .
$V_{f}=$?
$V_{i}=15.1 \mathrm{~m} / \mathrm{s}$
$V_{f}=V_{i}+a t$
$V_{f}=15.1 \mathrm{~m} / \mathrm{s}+\left(6.2 \mathrm{~m} / \mathrm{s}^{2} \times 5.0 \mathrm{~s}\right)$
$V_{f}=16 \mathrm{~m} / \mathrm{s}$
$\mathrm{T}=8.0 \mathrm{~s}$
<

Graphing Acceleration

-Can use 2 kinds of graphs - Speed vs. time

Distance vs. time

- Dependent
variable $=y$-axis
- Independent
variable=x-axis

1) On Distance vs. Time graphs a curved line means the object is accelerating.
2) Curved line also means your speed is increasing. Remember slope $=$ speed.

The graph is showing the speed of a car over time.

1) How is the speed of the car changing (speeding up, slowing down, or staying the same)? 1) The car is slowing down
2) What is this car's acceleration?

$$
a=\frac{\left(\bigvee_{f}\right)-\left(\bigvee_{i}\right)}{\text { time }} \quad a=\frac{-6 \mathrm{~m} / \mathrm{s}}{3 \mathrm{~s}} \quad a=-2 \mathrm{~m} / \mathrm{s}^{2}
$$

D.

Use the graphs above to help match the following statements with the

 descriptions provided underneath them. State why
Descriptions:

1. The car is stopped.

1. The car is stopped.
2. The car is traveling at a constant speed.
3. The car is traveling at a constant spe
4. The speed of the car is decreasing.
5. The speed of the car is d
6. The car is coming back.

Graph A matches description Graph C matches description Graph D matches description

Motion Concepts

Susan ran around the track four times for a distance of 1 mile in 6 minutes. Note: She started and stopped at the same point. Someone yelled, "Way to hustle, Susan! That's great speed. But, your displacement is zero!"

A group of friends meet at the front entrance of the mall. They spend the next 2 hours walking around the mall. One of the friends' wrist monitors says they walked a distance of 4.2 miles. When they return to the front entrance of the mall, their displacement is zero.
** What is the difference between distance and displacement?

Motion Concepts		
	Speed	Velocity
Susan (1 mile in 6 min)	0.167 mile/minute	0 mile/minute around the track
David	55 mph	55 mph North
Jaguar	70 mph	70 mph toward his prey
Elephant	25 mph	25 mph out of the jungle
Space-X Rocket	$7.9 \mathrm{~km} / \mathrm{s}$	$7.9 \mathrm{~km} / \mathrm{s}$ away from Earth
** What is the difference between speed and velocity?		

