

Nuclear Fission

Splitting of atom into two or more smaller fragments
Scientists bombard a larger nucleus with neutron
Releases large amounts of ENERGY and neutrons

Applications of Nuclear Reactions

- Dating of ancient artifacts (Carbon-14).
- Smoke detectors (Americium-241).
- Radioactive tracers in medicine (lodine-131, barium-140, phosphorus-32).
- Cancer treatment (Cobalt-60).
- Electricity generation (Uranium-235).
- Bombs (Uranium-235).

- Two or more nuclei (Hydrogens) combining to form a nucleus of larger mass.
- Produces even larger amount of energy than fission.

Why aren't we using Fusion of Fission? instead

Ignition temperatures are 100 million Kelvin, and no manmade container can hold this without melting. Not yet sustainable

- Atomic mass of 4

New element: decreased by an atomic number by 2 and the mass number by 4

Radioactive Decay of a Sample of Uranium-238

- How many half-lives does it take for Uranium-238 to decay to only 12.5%?
 How long did it take for Uranium-238 to decay to
- 6.25%?3. How much Uranium-238 is still left over after 4500 million years?
- In fraction form, how much of the original sample of Uranium-238 is still left over after 22,500 million years?

Half-Life Math Problem

•For example, suppose we had 20,000 atoms of a radioactive substance. If the half-life is 1 hour, how many atoms of that substance would be left after:

Radioactive Half-Life Practice Problems

1. How many grams of iodine 131 (half life- 5 days) would be left after 20 days if you start with 25 grams?

The half life is			5 days	
Number of half-lives passed	Amount	of Matter	Time	
0	Started with	25 g	0 { days}	
1	How Much is left	12.5g	5 days	
2	How Much is left	6.25 g	10 days	
3	How Much is left	3.12 g	15 days	
4	How Much is left	1.56 g	20 days	
5	How Much is left			

Answer: 1.56 g

2. How long will it take 600 grams of Plutonium 239 (half life 24,000 years) to decay to 18.75 grams?

120,000 yrs

The half life is			24,000 yrs
Number of half-lives passed	Amount	of Matter	Time
0	Started with	600 g	0 yrs
1	How Much is left	300 g	24,000 yrs
2	How Much is left	150 g	48,000 yrs
3	How Much is left	75 g	72,000 yrs
4	How Much is left	37.5 g	96,000 yrs
5	How Much is left	18.75 g	120,000 yrs

3. K-42 has a half-life of 15.5 hrs. If 13.125g of K-42 remains undecayed after 62.0 hours, what was the original sample size?										
	т	ne half life is		15.5 hrs						
	Number of half-lives passed	Amount of Matter		Time						
	0	Started with	210 g	0 hrs						
	1	How Much is left	105 g	15.5 hrs						
	2	How Much is left	52.5 g	31 hrs						
	3	How Much is left	26.25 g	46.5 hrs						
	4	How Much is left	13.125 g	62 hrs						
	5	How Much is left								