Chapter 11.1-11.2 Motion/Acceleration

Observing Motion

- Motion- an object's change in position relative to a reference point.

Frame of Reference

- Frame of reference- a system for specifying the precise location of objects in space and time.
- Object that you assume is fixed in place

Displacement

- Displacement- the change in position of an object.
- Always includes direction
- Shorter than distance traveled
- In the diagram:
- yellow line =distance
- black arrow = displacement

Speed

- To describe motion you discuss speed
-Speed is the distance an object travels per unit of time
-Constant speed-A moving object that doesn't change it's speed.
- Average speed-total distance traveled per total time it took.
-Speed is usually NOT CONSTANT
Constant speed or average speed?

1. Track Race
2. Walking with a friend
3. Hiking up and down a hill

Calculating Speed

- To calculate its speed you divide the distance it travels by the time it travels
- Speed (S) = distance traveled (d) / the amount of time it took (\dagger).

$S=d / t$

Units for speed

- Depends, but will always be a distance unit / a time unit
- Cars: mi/h
- Jets: km/h
- Snails: cm/s
- Falling objects m / s

2. It is 320 km to Las Vegas. If you average $80 \mathrm{~km} / \mathrm{hr}$, how long will it take you to get there?
$\mathrm{t}=\frac{320 \mathrm{~km}}{80 \mathrm{~km} / \mathrm{hr}} \quad \mathrm{t}=4$ hours

- 3. You are going on a trip. You average $80 \mathrm{~km} / \mathrm{hr}$ for 6 hours. How far did you go?

Velocity

- Velocity - the SPEED and DIRECTION of an object.
- It is more precise for describing motion
- Example:
- An airplane moving North at 500 mph
- A missile moving towards you at $200 \mathrm{~m} / \mathrm{s}$

People often use the word speed when they mean velocity

- Speed tells how fast an object moves
- Velocity tells both speed and direction

Speed= $40 \mathrm{~km} / \mathrm{hr}$ Velocity $=40 \mathrm{~km} / \mathrm{hr}$ west

Acceleration Practice Problems

2. Natalie accelerates her skateboard along a straight path from $0 \mathrm{~m} / \mathrm{s}$ to $4.0 \mathrm{~m} / \mathrm{s}$ in 2.5 s . Find her average acceleration.
Final speed $\left(V_{f}\right)=4.0 \mathrm{~m} / \mathrm{s}$
$a=\underline{4.0 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}} \quad a=1.6 \mathrm{~m} / \mathrm{s}^{2}$
Time=2.5s
2.5 s
$\mathrm{a}=$?
3. A turtle swimming in a straight line toward shore has a speed of $0.50 \mathrm{~m} / \mathrm{s}$. After 4.0 s , its speed is $0.80 \mathrm{~m} / \mathrm{s}$. What is the turtle's average acceleration?
$V_{f}=0.80 \mathrm{~m} / \mathrm{s}$
$V_{i}=0.50 \mathrm{~m} / \mathrm{s} \quad a=0.80 \mathrm{~m} / \mathrm{s}-0.50 \mathrm{~m} / \mathrm{s} \quad a=0.075 \mathrm{~m} / \mathrm{s}^{2}$
Time $=4.0 \mathrm{~s}$
$\mathrm{a}=$?
4. Mai's car accelerates at an average rate of $2.6 \mathrm{~m} / \mathrm{s}^{2}$. How long will it take her car to speed up from $24.6 \mathrm{~m} / \mathrm{s}$ to $26.8 \mathrm{~m} / \mathrm{s}$?
V
V
V
V
Time= ?
Time= ?
a=2.6 m/s}\mp@subsup{}{}{2
a=2.6 m/s}\mp@subsup{}{}{2
t= 爯
t= 爯
t= 26.8 m/s - 24.6 m/s
t= 26.8 m/s - 24.6 m/s
t=0.85 s
t=0.85 s

2.6 m/\mp@subsup{s}{}{2}
2.6 m/\mp@subsup{s}{}{2}

Question:

The black and red lines represent a objects that are accelerating. Black is going a greater distance each second, so it must be speeding up. Red is going less each second, so must be slowing down

Remember: in distance vs. time graphs: curved line $=$ accelerating, flat line $=$ constant speed

1) Which line represents an object that is accelerating?

The black and green lines

Question: Hard one (Draw)

Above is a graph showing the speed of a car over time. 1) What would a distance vs. time graph for this look like? It looks like the graph below.

