Physical Science

Review Graphs and Charts

Describe the motion between:

1. B and C
2. E and F
3. A and B
4. C and D
5. G and H

Describe the motion between:

1. A and B
2. B and C
3. C and D
4. Calculate the acceleration of the car between 0 and 20 seconds.
5. At 25 seconds, what is the car's acceleration?
6. Calculate the acceleration of the car between 30 and 60 seconds.

7. Which part of the graph shows a phase change requiring the greatest amount of energy? \qquad
8. Which part of the graph show a liquid heating up?
9. Which part(s) of the graph show(s) a phase change? \qquad

Specific Heats of Selected Materials	
Material	
Aluminum	$\mathbf{C}(\mathbf{J} / \mathbf{k g} \cdot \mathbf{K})$
Concrete	897
Diamond	850
Glass	509
Helium	840
Water	5193

Which Material \qquad ?

1. cools the fastest \qquad
2. holds the most energy \qquad
3. heats the slowest \qquad
4. exchange heat similarly \qquad

Which of Newton's Three Laws Applies?

1. \qquad a paddle-wheel boat pushes on the water and the water pushed back to move the boat
2. \qquad a tractor trailer truck takes longer to accelerate
3. \qquad a rolling ball hit your leg and is hard to stop
4. \qquad a heaver animal has to use more muscle to speed up
5. __ you push on the wall and you don't move
6. __ Fighter pilot feels massive amount of force when their plane turns quickly
7. __ a ball won't move until it is kicked

Endothermic Reaction

Endothermic or Exothermic

1	If it gets cold
2.	If it gets hot
3.	Condensation:
4.	Vaporization:
5.	If it absorbs heat
6.	If it releases heat
7.	Melting
8.	Freezing

Direction of reaction
Exothermic Reaction

1. Mark one cycle on the wave above
2. Starting at 0.75 m , where does the $2^{\text {nd }}$ cycle end
3. How many cycles are in the graph
4. Calculate the length of one wave
5. Calculate Amplitude of wave

Wave type: \qquad
A \qquad B \qquad
C
D \qquad
E \qquad

Identify circuits as Series or Parallel

B. \qquad
C. \qquad
D. \qquad

Wave Type: \qquad
\qquad

B \qquad

C \qquad

Symbol	Atomic Number	Mass Number	Number of Protons	Number of Electrons	Number of Neutrons
${ }^{23} \mathrm{Na}$					
K		40		19	
F					10
	20	41		18	
	50			50	72
${ }^{131} \mathrm{l}$					
		109	47	46	
	1	2		1	
${ }^{36} \mathrm{~S}$					

1. Give the number of Valance Electrons for:

Lithium \qquad Nitrogen \qquad Chlorine \qquad Calcium \qquad

Phosphorous \qquad Aluminum \qquad Selenium \qquad
2. Give oxidation number (charge) for:

Lithium \qquad Nitrogen \qquad Chlorine \qquad Calcium \qquad

Phosphorous \qquad Aluminum \qquad Selenium \qquad

Melting and Boiling Points of Some Substances		
Substance	Melting Point	Boiling Point
Hydrogen	$-259.3^{\circ} \mathrm{C}$	$-252.9^{\circ} \mathrm{C}$
Nitrogen	$-210.0^{\circ} \mathrm{C}$	$-195.8^{\circ} \mathrm{C}$
Acetic Acid	$16.6^{\circ} \mathrm{C}$	$117.9^{\circ} \mathrm{C}$
Gold	$1064.2^{\circ} \mathrm{C}$	$2856^{\circ} \mathrm{C}$

1. Based on the information in the table above, the melting point of acetic acid is \qquad .
2. Based on the information in the table above, the freezing point of nitrogen is \qquad .
3. Based on the information in the table above, which substances would be a gas at $0^{\circ} \mathrm{C}$?

4. In the above picture, which substance is a liquid?
5. In the above picture, which substance is a solid?
6. In the above picture, which substance is a gas?
7. In the above picture, which substance are the forces of attraction among the particles so weak that they can be ignored under ordinary conditions?

lonic/Covalent	$1^{\text {st }}$ element w/ charge if ionic	$2^{\text {nd }}$ element w/ charge if ionic	Chemical formula	Chemical Name
	Na^{+1}	Cl^{-1}	NaCl	Sodium Chloride
	K	S		
	Ca	Cl		
	C	O		Carbon dioxide
	N	O	$\mathrm{N}_{2} \mathrm{O}_{5}$	
	Mg	O		Magnesium oxide
	S	O		Sulfur trioxide
	Mg	P		
	Al	O		
			Cl_{4}	Oxygen triflouride
	Al	Cl	O	
	Ca	O	$\mathrm{P}_{2} \mathrm{O}_{5}$	
	Na	S		

$\mathrm{Li}_{2} \mathrm{O}+\mathrm{MgCl}_{2} \rightarrow 2 \mathrm{LiCl}+\mathrm{MgO}$

Write the second reactant: \qquad
Write the first product:
How many Lithium atoms are on the product side? \qquad
What is coefficient for lithium chloride? \qquad
Type of reaction: \qquad

Identify the type of reaction for each of the following equations

a) \qquad $\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow$ \qquad $\mathrm{CaBr}_{2}{ }^{+}$ \qquad NaOH
reaction type \qquad
a) \qquad $\mathrm{NH}_{3}+$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad$ _ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
reaction type \qquad
a) \qquad $\mathrm{C}_{5} \mathrm{H}_{10}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{CO}_{2}+$ \qquad
b) \qquad $\mathrm{Pb}+\ldots \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$ \qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
c) \qquad $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow$ \qquad $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{~N}$
d) \qquad $\mathrm{HBr}+$ \qquad $\mathrm{Al}(\mathrm{OH})_{3} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}+$ \qquad AlBr_{3}
\qquad
reaction type \qquad
reaction type \qquad
reaction type \qquad

1. The half-life of hydrogen-3 is 12.3 years. Given 100 g of hydrogen-3, how many grams will be left after 5 half-lives?
2. A patient is administered 20 mg of iodine-131. How much of this isotope will remain in the body after 40 days if the half-life for iodine-131 is 8 days?

Indicate whether the following substances are strong acids, weak acids, neutral, weak bases, or strong bases based on their pH .
a. \qquad Baking soda $\mathrm{pH}=8$
b. \qquad Lye $\mathrm{pH}=13$
C. \qquad Liquid plumber $\mathrm{pH}=12$
d. \qquad Ajax liquid $\mathrm{pH}=7.8$
e. \qquad Pepsi pH = 2.6
f. \qquad Nail polish Remover pH $=6.5$
g. \qquad Pickle juice $\mathrm{pH}=5$
h. \qquad Purified water $\mathrm{pH}=7$

Identify as Homogenous or Heterogeneous Mixtures.

Sugar Water
Vegetable Soup
Chex Mix \qquad
Jello w/ fruit \qquad
Milk
Plain Jello

1. At $40^{\circ} \mathrm{C}$, how much potassium nitrate can be dissolved in 100 g of water?
2. Which salt shows the least change in solubility from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$?
3. At $30^{\circ} \mathrm{C}, 90 \mathrm{~g}$ of sodium nitrate is dissolved in 100 g of water. Is this solution saturated, unsaturated, or supersaturated?
4.Which salt is least soluble at $90^{\circ} \mathrm{C}$?

