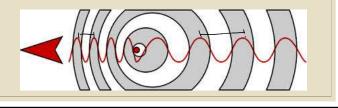
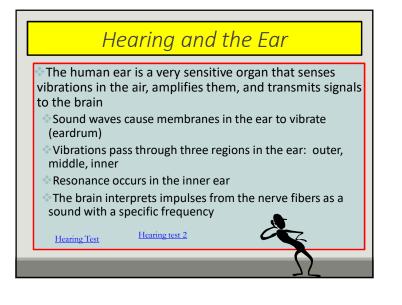

Properties of Sound

- The density and stiffness of the medium affects the speed at which sound travels through the medium.
- Mediums that are more dense allow sound to travel faster because the particles are close together and do not have to travel a great distance when colliding with neighboring particles.
- Temperature also affects the speed of sounds
 - Hot temperature allow sounds to move faster than cold temperatures.


Medium	Speed of sound (m/s)	Medium	Speed of sound (m/s)
Gases		Liquids at 25 °C	
Air (0 °C)	331	Water	1,490
Air (25 °C)	346	Sea water	1,530
Air (100 °C)	386	Solids	
Helium (0 °C)	972	Copper	3,813
Hydrogen (0 °C)	1,290	Iron	5,000
Oxygen (0 °C)	317	Rubber	54

Speed of sound in Various Mediums

- ° Doppler effect-an observed change in the frequency of a wave when the source or observer is moving
- ° A sound wave frequency change is noticed as a change in pitch.
- ° The Doppler effect occurs for many types of waves, including sound waves and light waves.



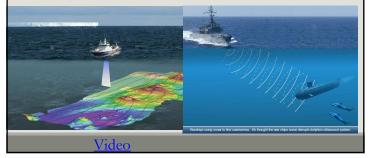
Resonance is an effect in which the vibration of one object causes the vibration of another object at a natural frequency

Instruments use resonance to amplify sound (guitar)

Ultrasound and Sonar

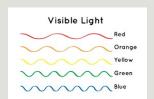
Like all waves, sound waves reflect

The reflection of sound waves can be used to determine distance and to create maps and images


Sonogram made by different boundary surfaces by a computer. <u>Ultrasound</u> is used to create sonogram (1,000,000,000 Hz and 15,000,000 Hz). Not damaging to human cells

GB LIVER GB Wall Thickening GB Wall Thickening

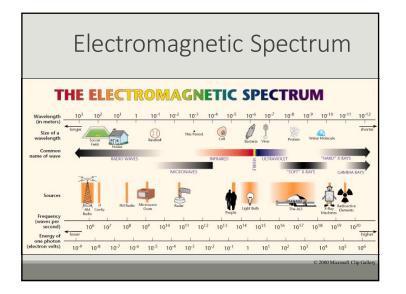
Ultrasound and Sonar

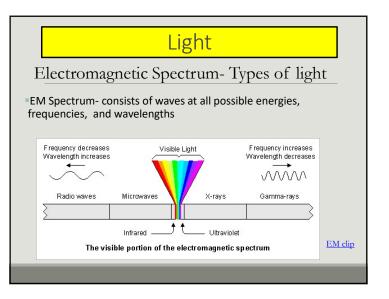

- Sonar is a system that uses reflected sound waves to determine the distance to and location of objects
- Sonar is used for underwater location
- Distance can be determined by the formula d=vt

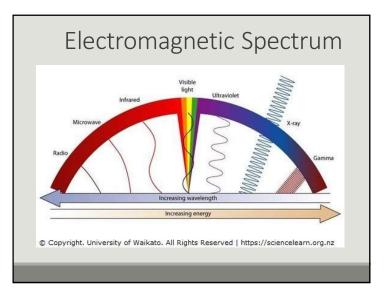
Light

- Type of electromagnetic wave
- Light can behave as waves and as particles.
- Wave model- interference of light
- \circ Particle model-light knocking electrons off a metal plate or light traveling through space $\rho_{holp_{\Lambda}}$

Both models are accepted by scientists

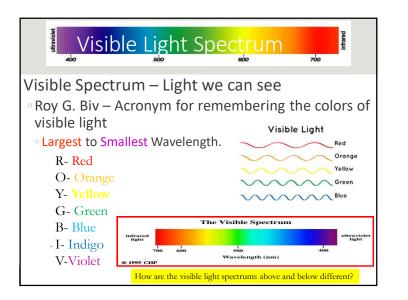

Light


The energy of light is proportional to frequency


- Each photon of light carries a small amount of energy.
- The amount of this energy is proportional to the frequency of the corresponding electromagnetic wave.

Type of wave	Wavelength	Wave frequency	Photon energy
	1.33 × 10 ⁻⁶ m	$2.25 \times 10^{14} \text{Hz}$	1.5 × 10 ⁻¹⁹ J
Visible light	6.67 × 10 ^{−7} m	$4.5 imes 10^{14}$ Hz	3.0 × 10 ⁻¹⁹ J
Ultraviolet	3.33 × 10 ⁻⁷ m	9.0 × 10 ¹⁴ Hz	6.0 × 10 ⁻¹⁹ J

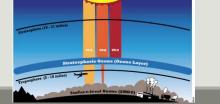
Light		
The speed of light depe	ends on th	e medium
 In a vacuum, light travels at the same speed, 	Medium	Speed of light (× 10 ⁸ m/s)
<i>c</i> =3 x 10 ⁸ m/s.	Vacuum	2.997925
Nothing travels faster than the speed light.	Air	2.997047
Light is the fastest signal in the	lce	2.29
electromagnetic spectrum.	Water	2.25
Light slows down when passing through a medium	Quartz	2.05
 Transparent mediums like air, 	Glass	1.97
 mansparent mediums like air, water, glass 	Diamond	1.24



Radio waves are used in communication and radar

- Lowest frequency
- FM, AM, and TV signals

Microwaves used in cooking and communication


- Telecommunication over a long distance. (Space to Earth)
- Infrared light can be felt as warmth
- Sun or a heat lamp warm you.
- Weather satellites read (temperature changes) for the tracking of cloud movement

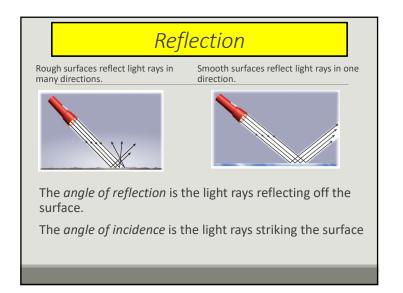
Electromagnetic Spectrum-Types of light

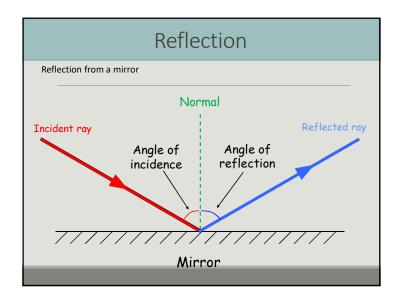
•Ultraviolet light has higher energy and shorter wavelengths than visible light.

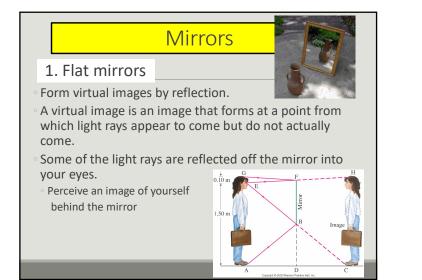
- Sunlight contains ultraviolet light (UV rays) (9%)
- •UV rays can pass through thin layers of clouds, causing sunburn.

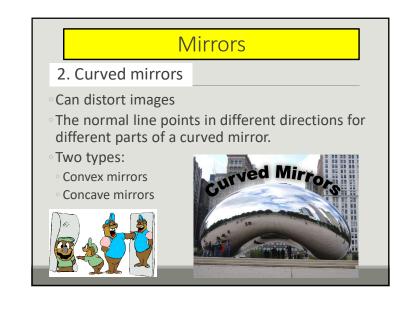
Electromagnetic Spectrum-Types of light

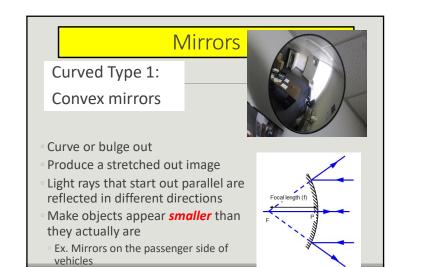
X rays and gamma rays are used in medicine.

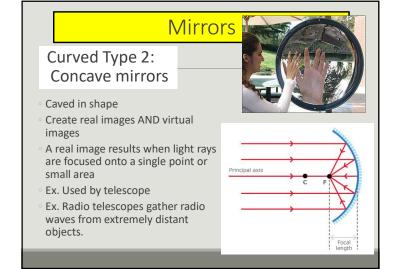

Both have higher energy and shorter wavelengths than UV rays

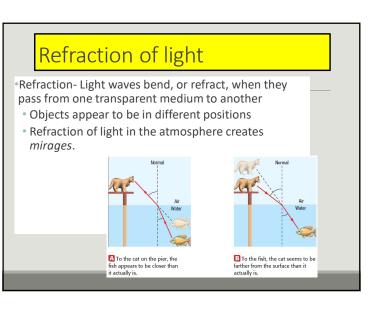

Gamma rays have the highest energy and the shortest wavelengths.


Both rays can kill living cells, or turn them into cancer cells.


Gamma rays can be used to treat cancer, by killing diseased cells









Seeing Color White light • contains all visible colors - ROY G. BIV • an object... • reflects the color you see • absorbs all other colors Black is the absence of color; all light is absorbed • No light gets to your eyes

REFLECTS ALL COLORS ABSORBS ALL COLORS

