

Temperature

-Upper Limit

- No upper limit exists.
- Plasma found in starts= millions of degrees C

-Lower Limit

- Definite limit called absolute zero.
- Molecules will slow down SO much, they will essentially stop moving
- Out of energy, so they can't get any colder.

Temperature Scales

- Three different scales:
- 1. Fahrenheit- the one we use
- 2. Celsius- metric standard
- 3. Kelvin- starts at absolute zero but same degree size as Celsius

Fahrenheit scale.

Water freezes 32 °F Water boils 212 °F Celsius scale" Freezing 0 ° C Boiling 100 ° C

	Boiling	212ºF	373 K
_	0ºC	32ºF	273 K

_	100ºC	212ºF	373 K
	0°C	32ºF	273 K
_	−273ºC	-492⁰F	0 K
		ABSOLUTE ZERO COTOL	
		and a	

Temperature Conversion						
K = C + 273 $C = K - 273$						
	Convert the following to	Celsius				
1) 32 K -241°C	2) 1020 K 747°C	3) 45 K <u>-228°</u> C				
4) 0 KC	5) 70 K <u>-203°C</u>	6) 273 K <u>0</u> °C				
Co 7) -50° C <u>223 K</u> 9) 90° C <u>363 K</u>	nvert the following to Kelvin 8) -150° C 10) 27 ° C	<u>123 к</u> 300 к				

Check For Understanding

Which way will the energy

move?

1st Law of Thermodynamics

- First law of Thermodynamics:
 - For any system, the net change in energy equals the energy transferred as work and as heat.
 - A version of the law of conservation of energy
 - · Energy can change forms, but cannot be created or destroyed

Whenever the total energy in a system

increases, it must be due to energy that enters the system from an external source.

2nd Law of Thermodynamics

- Energy spontaneously spreads from regions of higher concentrations to regions of lower concentration.
- Energy transfers as heat always moves from a hot to cold objects.

Will the heat move from the cat to the radiator?

•	Metals have a low
	specific heat
•	Water has a high
	specific heat

Specific Heat in Metals Clip

٠

c (J/kg∙K)	Substance	c (J/kg∙K)
4,186	Copper	385
2,440	Iron	449
2,060	Silver	234
1,870	Mercury	140
897	Gold	129
709	Lead	129
	<i>c</i> (J/kg•K) 4,186 2,440 2,060 1,870 897 709	c (J/kg•K) Substance 4,186 Copper 2,440 Iron 2,060 Silver 1,870 Mercury 897 Gold 709 Lead

Specific Heat

- Heat capacity depends on:
 - Temperature of object
 - Mass of object
 - Type of object

Substance	c (J/kg∙K)	Substance	c (J/kg∙K)
Water (liquid)	4,186	Copper	385
Ethanol (liquid)	2,440	Iron	449
Ammonia (gas)	2,060	Silver	234
Steam	1,870	Mercury	140
Aluminum	897	Gold	129
Carbon (graphite)	709	Lead	129

- Substance with high specific heat, require a lot of energy.
- Substance with low specific heat, require small amount of energy.

Specific Heat Conductor Ethanol (liquid 2,440 Iron 449 Ammonia (gas) 2,060 Silver 234 Low specific heat • 1.870 140 Mercury Aluminum 129 897 Gold Usually metals Carbon (graphite 709 129 • Require small amount of heat to change T • Lose their energy quickly Insulator

- High specific heat
- Require a lot of heat to change T
- Do not give up their energy easily

Understanding Specific Heat

$Q = m x \triangle T x C$

- As mass, Temperature, or specific heat increases, the energy required also increases.
- As mass, Temperature, or specific heat decreases, the energy required also decreases.

Practicing Char	nge in Temperature
$\triangle T$ = change in term	iperature (T _f – Ti)
1. A 15.75-g piece of iron	absorbs 1086.75
joules of heat energy, and	d its temperature
changes from 25 K to 17	5 K.
Τ _f = 175 K	(175 K – 25 K)
T _i = 25 K	<mark>150 K</mark>

Practice Problems: Specific Heat 1. How much energy must be transferred as heat to 200 kg of water in a bathtub to raise the water's temperature from 25 K to 37K? c (J/kg∙K) Substance c (J/kg•K) Substance $Q = cm\Delta T$ Water (liquid) 4,186 Copper 385 449 Ethanol (liquid) 2,440 Iron ∆*T*=37 K− 25 K 234 Ammonia (gas) 2.060 Silver ∆*T*=12 K 140 Steam 1,870 Mercury Aluminum 897 129 Gold m= 200 kg Carbon (graphite) 709 Lead 129 c= 4,186 J/kg x K Q = ?Q= 10,046,400 J or 1.0 x 10⁷ J Q = 4186 x 200 kg x 12 k What does that say about it's specific heat?

Practice Problems: Specific Heat

2. How much heat does it take to change the temperature of 3 kg of water by 75 K?

$Q = cm\Delta T$	Substance	c (J/kg∙K)	Substance	c (J/kg∙K)
	Water (liquid)	4,186	Copper	385
∆ <i>T=</i> 75 K	Ethanol (liquid)	2,440	Iron	449
	Ammonia (gas)	2,060	Silver	234
m= 3 kg	Steam	1,870	Mercury	140
c= 4,186 J/kg x K	Aluminum	897	Gold	129
Q = ?	Carbon (graphite)	709	Lead	129
Q = 4186 x 3 kg x 75 k	Q = 94	1,850 J or {	9.41 x 10⁵ J	J
	What speci	does that sa fic heat?	ay about it' s	5
1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1				

Practice Problems: Specific Heat

Practice Problems: Specific Heat

4. How much energy is needed to increase the temperature of 0.755 kg of iron from 283 K to 403 K?

Practice Problems: Specific Heat

5. A wooden block has a mass of 20.0 kg and a specific heat of 1,700 J/(kg \cdot °C). Find the change in thermal energy of the block as it warms from 15.0 °C to 25.0 °C.

K = C + 273

IName:	Date:		-	/	$\langle \rangle$
	Determining Specific Heat Wor	ksheet		4	\rightarrow
•	·····				
Instructions:	Use the following information to help you answer	the questions	l. 		_
$\mathbf{Q} = \mathbf{mc}\Delta \mathbf{T}, \text{ with } \mathbf{R}$	tere Q = heat energy, m = mass, c= specific heat c	apacity, and Δ	I' = change	in temp.	
Remember, $\Delta 1$	$T = (T_{\text{final}} - T_{\text{initial}}).$				
Show all work	and proper units.		110 10		
1. There true	whateness A and D. A is at 202K and D is at 222 K	Substance Water flood	C (J/Kg+K)	Substance	C (J/Kg+K
1. I have two s	uostances A and B. A is at 295K and B is at 525K.	Water (inquis)	4,100	Copper	303
when t	ney are mixed together:	Ammonia (nas)	2,050	Shor	234
a.	Heat will flow from to	Steam	1 870	Mercury	140
		Aluminum	897	Gold	129
Ь.	Substance A will	Carbon (graphite)	709	Lead	129
	(lose/gain) heat.	2	1.		
с.	After some time A and B will have the	tempe	erature.		
2. Define a co	nductor.				
	- 1 . <i>1</i>				
3. Define an in	sulator.				

		Substance	c (J/kg+K)	Substance	c (J/kg+K)
		Water (liquid)	4,186	Copper	385
		Ethatol (liquid)	2,440	Iton	449
		Ammonia (pas)	2,060	Silver	234
		Steam	1,870	Mercury	140
		Auminum	897	Gold	129
		Carbon (graphite)	709	Lead	129
4.	B. Why does water require this amount to increase the temperatA. How much heat does it take to change the temperature of 12	ture by only 6 °C kg of water by 1	2? 145 K?		
	B. How does the mass of water affect the amount of energy to	raise the tempera	ature?		
5.	A. In order to make tea, 175,250 J of energy were added to 25.5 temperature change of water?	5 kg of water. W	hat was th	e	
	B. How would temperature be affected if only 100,000 J of end	ergy were applied	d instead?		

	Substance	c (J/kg+K)	Substance	c (J/kg+K)	
	Water (liquid)	4,186	Copper	385	
	Ethanol (liquid)	2,440	tron	449	1
	Ammonia (gas)	2,060	Silver	234	1
	Steam	1,870	Mercury	140	1
	Aluminum	897	Gold	129	1
	Carbon (graphite)	709	Lead	129	1
A. A 0.016 kg j	piece of an unknown sub	e temperature o ostance absorbs	of 2.75 kg of .	gold from 14 les of heat er	4 K to 287 K? ergy, and its
A. A 0.016 kg j temperature cha substance using	piece of an unknown sut anges from 25°K to 175° the table above.	e temperature o ostance absorbs 'K. Calculate t	of 2.75 kg of 1086.75 jou the specific h	gold from 14 les of heat er eat capacity.	4 K to 287 K? tergy, and its Identify the unknown
A. A 0.016 kg J temperature cha substance using B. Is this subst	piece of an unknown sub anges from 25°K to 175° the table above.	e temperature o ostance absorbs oK. Calculate t or a good insula	of 2.75 kg of . 1086.75 jou the specific h	gold from 14 les of heat en eat capacity.	4 K to 287 K? tergy, and its Identify the unknown
 A. A 0.016 kg p temperature cha substance using B. Is this subst C. Provide evidence 	piece of an unknown sub anges from 25°K to 175' the table above. ance a good conductor o dence supporting your c	e temperature o estance absorbs K. Calculate f or a good insula laim above.	of 2.75 kg of . 1086.75 jou the specific h	gold from 14 les of heat en eat capacity.	4 K to 287 K? ergy, and its Identify the unknown

Substance	c (J/kg+K)	Substance	< (J/kg+K)
Water (liquid)	4,196	Copper	385
Ethanol (liquid)	2,640	Iron	449
Ammonia (gas)	2,060	Silver	234
Steam	1,870	Mercury	140
Aluminum	897	Gold	129
Carbon (graphite)	709	Lead	129

9. Calculate the specific heat capacity of a piece of wood if 1.5 kg of the wood absorbs 67,500 joules of heat, and its temperature changes from 32° K to 57° K.

10. A 0.10 kg of 4.0°K water is heated until its temperature is 37°K. Calculate the amount of heat energy needed to cause this rise in temperature.

11. A. A 0.025 kg of an unknown substance is heated from 25°K to 155°K, and absorbs 455 joules of heat in the process. Calculate the specific heat capacity. Identify the unknown substance.

B. Is this substance a good conductor or a good insulator?

C. Provide evidence supporting your claim above.

Substance	c (J/kg+K)	Substance	c (J/kg+K
Water (liquid)	4,186	Copper	385
Ethanol (liquid)	2,440	Iron	449
Ammonia (gas)	2,060	Silver	234
Steam	1,870	Mercury	140
Auminum	897	Gold	129
Carbon (graphite)	709	Lead	129

12. Calculate the specific heat capacity and identify the unknown metal if 0.055 kg of the metal absorbs 193 J of heat and the temperature rises $15.0^\circ\mathrm{K?}$

13. What mass of water will change its temperature by 3 °K when 525 J of heat is added to it?

14. A 0.3 kg piece of copper is heated and fashioned into a bracelet. The amount of energy transferred by heat to the copper is 66,300 J. If the specific heat of copper is 385 J/kg ⁰K, what is the change of the copper's temperature?

Chapter 3.2 Changes of State

- What happens when a substance changes from one state of matter to another?
- What happens to mass and energy during physical and chemical changes?

Energy and Changes of State

- The identity of a substance does not change during a change in state (Physical change)
- -The ability to change or move matter
 - As you add energy to a liquid, the temperature goes up separating molecules

Energy and Changes of State

- -Some changes of state require energy.
- Thermal energy increases
- Molecules speed up.
 - Melting, boiling and sublimation

Energy is Released

- Energy is released in some changes of state. Loss of thermal energy
- Molecules slow down.
 - Freezing, condensation & deposition

Energy is Released

Freezing

- Change of state from water to solid.
- Loss of thermal energy

- A phase diagram shows the temperature and pressures necessary for each state of matter to exist.
- The <u>temperature</u> at which a phase change happens can change depending on the **pressure**.

