CHAPTER 13.1 \& 13.2

Work, Power and Machines

Work is force times distance...but!

Is work be

- Dragging a bag of books

YES

Moving furniture up a flight
of stairs

- YES
- Pushing against a locked door
- Swinging a golf club
- NO
- Sitting on a chair
- YES
- NO

All or part of the force must act in the direction of the movement.

Work
-When an Olympic weight lifter presses a barbell over his head? he is doing work -When he has to hold it there until the judges say he can put it down? he is not doing work

- Big force but no distance

Do you do more work when you finish a job quickly?
"Work does NOT involve time, only force and distance.
"No work is done when you stand in place holding an object.

What do you think?

-You push a stationary wall with a force of 1000N. How much work was done to the wall?

Calculating Work

- Work= force \mathbf{x} distance

- W = F xd
- Unit of work is Joules

Units of work
- Force $=$ Newton
- Distance $=$ meters
\cdot
Work $=$ Newton x meter $(\mathrm{N} \cdot \mathrm{m})$
$\cdot \mathrm{N} \cdot \mathrm{m}=1 \mathrm{Joules}(\mathrm{J})$
\cdot
$\mathrm{Or} \mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$

- Energy is expressed in JOULES (J)
- Energy can be expressed more specifically by using the term WORK(W)

What is the formula when solving for force?

F= work/distance

What is the formula when solving for distance?

D= work/force

Practice Problem (Work)

1. A crane uses an average force of $5,200 \mathrm{~N}$ to lift a girder 25 m . How much work does the crane do on the girder?

$W=?$
$F=5,200 \mathrm{~N}$
$d=25 \mathrm{~m}$

2. A bicycle's brakes apply 125 N of frictional force to the wheels as the bike moves 14.0 m . How much work do the brakes do?

$$
\begin{aligned}
& \mathrm{W}=? \\
& \mathrm{~F}=125 \mathrm{~N} \\
& \mathrm{~d}=14.0 \mathrm{~m}
\end{aligned} \quad \mathrm{~W}=\mathrm{F} \times \mathrm{d} \quad \mathrm{~W}=125 \mathrm{~N} \times 14.0 \mathrm{~m} \quad \mathrm{~W}=1,750 \mathrm{~J}
$$

Practice Problem (Work)

3. A mechanic uses a hydraulic lift to raise a $1,200 \mathrm{~kg}$ car 0.50 m off the ground. How much work does the lift do on the car?

$$
\begin{array}{llc}
W=? & F=m \times a & W=F \times d \\
F=? & F=1,200 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{s}^{2} & \mathrm{~W}=12000 \mathrm{~N} \times 0.50 \mathrm{~m} \\
\mathrm{~d}=0.50 \mathrm{~m} & \mathrm{~F}=12000 \mathrm{~N} & \mathrm{~W}=6000 \mathrm{~J}
\end{array}
$$

4. A car has run out of gas. Fortunately, there is a gas station nearby. You must exert a force of 715 N on the car in order to move it. By the time you reach the station, you have done 2.72 x $10^{4} \mathrm{~J}$ of work. How far have you pushed the car?
```
W=2.72\times104
F=715N
\(d=38.04 \mathrm{~m}\)
\(F=715 \mathrm{~N}\)
\(\mathrm{~d}=\) ?
```

5. What requires more work? Lifting a 50 kg sack a vertical distance of 2 m or lifting a 25 kg sack a
vertical distance of 4 m ? vertical distance of 4 m ?
6. A mover is loading a 253 kg crate of hammers onto a truck. The upward force on the crate is 2470 N and 3650 J of work are required to raise the crate from the pavement to the truck bed. How far is the crate lifted?
7. A popular and dangerous circus act is the human cannonball, in which a person is shot from a cannon. Suppose the cannon has a barrel that is 3.05 m long and $1.67 \times 10^{4} \mathrm{~J}$ of work is done to accelerate the acrobat. What is the force exerted by the cannon on the acrobat?
8. A child pulls a sled up a snow-covered hill. In the process, the child does 405 J of work on the sled. If she walks a distance of 15 m up the hill, how large a force does she exert on the sled?
9. Mrs. Spalla exerts a force of 25 N in order to push a cart through the hallway. How much work is done
when she pushes the cart 40 m between classes?
10. You must exert a force of 4.5 N on a book to slide it across a table. You move it 0.5 meters. How much work have you done.
11. Your roller blade brakes apply 5.6 N of frictional force as you travel 2 meters. How much work have the brakes done?
12. A car has run out of gas. Fortunately, there is a gas station nearby. You must exert a force of 715 N on the car in order to move it. By the time you reach the station, you have done $2.72 \times 10^{4} \mathrm{~J}$ of work. How
far have you pushed the car?

Power
 $$
P=\frac{w}{t}
$$

-What is Power?

- It is the rate at which work is done.
- How quickly work is done.
- Quantity that measures work in relation to time.
- Watts are units of Power
- Used to measure power of light bulbs and small appliances
- An electric bill is measured in kW/hrs.
- 1 kilowatt $=1000 \mathrm{~W}$

Machines

- A device that makes work easier.
- A machine can change the size, the direction, or the distance over which a force acts.
- They multiply force by using a small force to go a long distance
- Things like ramps, levers, etc.

$$
\begin{aligned}
& \mathrm{W}=75 \mathrm{~N} \times 1 \mathrm{~m}=75 \mathrm{~J} \\
& \mathrm{~W}=25 \mathrm{~N} \times 3 \mathrm{~m}=75 \mathrm{~J}
\end{aligned}
$$

Mechanical Advantage (MA)

- How many times a machine multiplies the input force
- Mechanical advantage greater than 1 multiples force
- Less than 1 it multiplies distance, less force

Mechanical Advantage (MA)

Mechanical Advantage = output force

Forces involved:
-Input Force
${ }^{-} F_{1}$
"Effort Force

- Force applied to a machine

Output Force

- F_{O}
"Resistance Force
- Force applied by a machine

Mechanical Advantage

Mechanical Advantage $=\underline{\text { input distance }}$

Distance involved:

Input Distance	Output Distance
$\cdot \mathrm{D}_{1}$	$\cdot \mathrm{D}_{\mathrm{o}}$
\cdot Length distance	\cdot Height distance
- Effort distance	\cdot Resistance distance

Calculating Mechanical Advantage
 2 Types of MA

Calculating Mechanical Advantage

1. Mechanical Advantage $=$ output force
input force
2. Mechanical Advantage = input distance
output distance
```
- MA = has no unit
- Force= Newtons
- Distance = meter
```

Calculating Mechanical Advantage	
What does the formula look What does the formula like if you are looking for look like if you are looking output force?	
What input force?	
Whe does the formula look you are looking for litput distance?	What does the formula look like if you are looking for output distance?

Mechanical Advantage

The force that you apply on a machine is known as the \qquad _.

Answer

The force that you apply is the input force. The force the machine applies is the output force.

Practice Problem (Mechanical Advantage)

1. Find the mechanical advantage of a ramp that is 6.0 m long and 1.5 m tall.
$M A=$ input distance/output distance
$M A=6.0 \mathrm{~m} / 1.5 \mathrm{~m}$
$\mathrm{MA}=4.0$
So, what was increased?

Force, because it was great than 1

Practice Problem (Mechanical Advantage)

2. Alex pulls on the handle of a claw hammer with a force of 15 N . If the hammer has a mechanical advantage of 5.2 , how much force is exerted on the nail in the claw?

Practice Problem (Mechanical Advantage)

3. If an input force of 202 N is applied to the handles of the wheelbarrow with a mechanical advantage of 2.2. How large is the output force that just lifts the load?
$\mathrm{MA}=2.2$
$\mathrm{~F}_{\text {out }}=$?
$\mathrm{F}_{\text {out }}=\mathrm{MA} \times \mathrm{F}_{\text {in }}$

4. Suppose you need to remove a nail from a board by using a claw hammer. What is the input distance for a claw hammer if the output distance is 2.0 m and the mechanical advantage is 5.5 ?

Mechanical Advantage

5. What is the MA for the example below?

The mechanical advantage is 3 . The machine has multiplied
the woman's effort force by 3 . This makes the object easier for the woman's effort force by 3 . This makes the object easier for her to lift.

Mechanical Advantage

6. What is the MA for the example below?

Mechanical Advantage Question?

As an inclined plane becomes longer, the force needed to move an object over it becomes \qquad _.

Answer

The force needed becomes smaller. This is the advantage of using a ramp, which is an inclined plane, instead of lifting objects.

Mechanical Advantage Worksheet

1. Mechanical Advantage $=\frac{\text { output force }}{\text { input force }} \quad$ 2. Mechanical Advantage $=\frac{\text { input distance }}{\text { output distance }}$

$$
\begin{array}{ll}
=\frac{\text { output force }}{\text { input force }} & \text { 2. Mechanical Advantage }=\frac{\text { input distance }}{\text { output distance }}
\end{array}
$$

1. The power steering in an automobile has a mechanical advantage of roughly 75. If the input force on the steering wheel is 49 N , what is the output force that turns the car's front wheels?
2. An axe used to split wood is driven into a piece of wood for an input distance of 3.0 cm . If the mechanical advantage of the axe is 0.85 , how far apart (output distance) is the wood split?
3. The mechanical advantage of an automobile's wheel and axle is 0.0893 . If the wheel's output force is 2220 N , what is the input force that turns the axle?
4. You apply a force of 18 N on to the end of a lever to open a paint can lid. The resistance of the lid is 9 N . Calculate the MA.
5. An Archimedean screw is a screw within a closely fitting cover, so that water can be raised when the screw is turned. Suppose the screw has a mechanical advantage of 12.5 . If the screw is turned several times, so that the input distance is 15.7 m , how much has water been lifted upward by the screw?
6. A mover uses a ramp to load a crate of nails onto a truck. The crate, which must be lifted 1.4 m from the street to the bed of the truck, is pushed along the length of the ramp. If the 1.4 m rom 4.6 m long and friction between the ramp and crate can be ignored, what is the mechanical advantage of the ramp?
7. A complex arrangement of puleys forms what is called the block in a block and tackle. The rope used to lift the pulleys and the load is the tackle. A block and tackle is used to lift a truck engine uses a force of nearly 7406 N . The required force to lift this weight using the block and tackle is 308.6 N . What is the mechanical advantage of the block and tackle?
8. It has been proposed that the stones of the Pyramids in Egypt were raised by using ramps. Suppose one of these ramps had a mechanical advantage of 3.86 . If an input force of 6350 N was
provided by laborers, what would the output force on the stone have been?
9. A wedge with a mechanical advantage of 0.78 is used to raise a house corner from its foundation. If the resistance force is 7500 N , what is the effort force?

What is a Simple Machine?

- A simple machine has
few or no moving
parts.
- Simple machines
make work easier
- Six types
- Levers, Incline Plan,
Pulley, Wheel \& Axel,
Wedge, Screw
- Lever (Levers, Wheel \& Axel, Pulley)
- Incline Plan (Incline plan, wedge, screw)

1. THE LEVER

- A bar that is free to pivot, or move about a fixed point when an input force is applied.
- Fulcrum = the pivot point of a lever.
- There are three classes of levers based on the positioning of the effort force, resistance force, and fulcrum.

Class 1 Lever

Class 2 Lever

Class 3 Lever

Lever Family- ${ }^{\text {st }}$ Class

- The fulcrum is in the middle and the load and effort is on either side
- Makes work easier by multiplying the effort
 force AND changing direction.

Ex. See-saw, Hammer

Lever Family- $3^{\text {rd }}$ Class

- The fulcrum is again at the end, but the effort is in the middle
- Does NOT multiply the effort force, only multiplies the distance.

Class 3 Lever

Ex: tweezers

Mechanical advantage of levers.

- Ideal = input arm length/output arm length

2.Wheels and Axles

- A lever that rotates in a circle.
- A combination of two wheels of different
 sizes.
- Smaller wheel is termed the axle.
- IMA = radius of wheel/radius of axle

3. Inclined Planes

- An inclined plane is a flat surface that is higher on one end - Inclined planes make the work of moving things easier

Reduces input force

- Ramp

the inclined plane

MA on ramp

Mechanical Advantage = input distance
 output distance

5. Screws

- A screw is an inclined plane wrapped around a shaft or cylinder.
- The inclined plane allows the screw to move itself when rotated.

4. Wedges

- Two inclined planes joined back to back. - Wedges are used to split things.

6. Pulleys- Lever family

- Pulley are wheels with a groove around the outside
- A pulley needs a rope, chain or belt around the groove to make it do work
- They redirect force

Enables us to use gravity to help us (it is usually easier to pull down to lift something up)

- One end of rope has a force applied

Why use pulleys?

Pulleys Systems

Pulley Type: Movable Pulley

Movable Pulley

- Pulley is attached to object
- Pulley and object move together
- Rope is attached to something that does not move
- Force applied to other end of rope

Single moveable pulley $M A=2$

Pulley types

- FIXED
- Can only change the direction of a force.
- $\mathrm{MA}=1$
- MOVABLE
- Can multiply an effort force, but cannot change direction.
- MA > 1

IMA $=$ Number of supporting ropes

Pulley Systems

5/5/2015

Mechanical Advantage

There are three main advantages to using a machine. In what three ways does a machine make work easier?

Answer

A machine makes work easier by changing the amount of force you need to exert, changing the distance over which the force is exerted, and changing the direction in which you exert the force.

Mechanical Advantage

- How many supporting strands are there?
- What is the Mechanical advantage here equal to?
- What is the input force required to lift the 200 kg object?

Compound Machines

- Compound machine: a machine that combines more than one simple machine.
- Simple Machines can be put together in different ways to make complex machinery

