CHAPTER 13.1 \& 13.2

Work, Power and Machines

Work is force times distance...but!

- Only the force component in the direction of motion counts!

All or part of the force must act in the direction of the movement.

Is work being done or not?

- Mowing the lawn
- YES
- Dragging a bag of
- YES books

Moving furniture up a
YES flight of stairs

- Pushing against a locked door NO

Swinging a golf club

- Sitting on a chair

YES
NO

Calculating Work

- Work= force x distance
- Energy is expressed in JOULES (J)
- $W=F x d$
- Unit of work is Joules
- Energy can be expressed more specifically by using the term WORK(W)

Units of work
- Force $=$ Newton
- Distance $=$ meters
- Work $=$ Newton \times meter ($\mathrm{N} \cdot \mathrm{m})$
- $\mathrm{N} \cdot \mathrm{m}=1 \mathrm{Joules}(\mathrm{J})$
$-\mathrm{Or} \mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$

What is the formula when solving for force?
$\mathrm{F}=$ work/distance

What is the formula when solving for distance?
D= work/force

So if an apple weighs about 1 N and you lift it 1 meter.

That is $1 \mathrm{~N} \cdot \mathrm{~m}$ of work or 1 J of work

Practice Problem (Work)

1. A crane uses an average force of $5,200 \mathrm{~N}$ to lift a girder 25 m . How much work does the crane do on the girder?

2. A bicycle's brakes apply 125 N of frictional force to the wheels as the bike moves 14.0 m . How much work do the brakes do?
$\mathrm{F}=125 \mathrm{~N}$
N
$\mathrm{W}=125 \mathrm{~N} \times 14.0 \mathrm{~m}$
$W=1,750 \mathrm{~J}$ or $W=1.75 \times 10^{3} \mathrm{~J}$
d $=14.0 \mathrm{~m}$
$\mathrm{W}=125 \mathrm{~N} \times 14$

Practice Problem (Work)

3. A mechanic uses a hydraulic life to raise a $1,200 \mathrm{~kg}$ car 0.50 m off the ground. How much work does the lift do on the car?

$$
\begin{array}{lll}
W=? & F=m \times a & W=F \times d \\
F=? & F=1,200 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} & W=11760 \mathrm{~N} \times 0.50 \mathrm{~m} \\
\mathrm{~d}=0.50 \mathrm{~m} & \mathrm{~F}=11760 \mathrm{~N} & \mathrm{~W}=5880 \mathrm{~J}
\end{array}
$$

4. A car has run out of gas. Fortunately, there is a gas station nearby. You must exert a force of 715 N on the car in order to move it. By the time you reach the station, you have done 2.72 $x 10^{4} \mathrm{~J}$ of work. How far have you pushed the car?

Power

-What is Power?

- It is the rate at which work is done.
- How quickly work is done.

- Quantity that measures work in relation to time.
- Watts are units of Power
- Used to measure power of light bulbs and small appliances
- An electric bill is measured in kW/hrs.
- 1 kilowatt $=1000 \mathrm{~W}$

Understanding Power

- Running up stairs is harder than walking up stairs Why? • Running does the same work more quickly - Your power output would be greater than if you walked up the stairs.
- If two people mow two lawns of equal size and one does the job in half the time, who did more work?
- Same work
- Different power exerted

Calculating Power
- Power is work divided by time
- Power = work/time
- Units for power is watts
- Power = Watts (W) - Work= Joules - Time $=s$ What is the formula when solving for work? - 1 watt is the power to do 1 J of work in 1 s What is the formula when solving for time?

Practice Problem (Power)

1. A student lifts a 12 N textbook 1.5 m of the floor in 1.5 s .

How much work did he do?
$W=f \times d$
$W=12 \mathrm{~N} \times 1.5 \mathrm{~m}$
$W=18 \mathrm{~J}$
How much power did he use?
$P=W / t \quad P=18 \mathrm{~J} / 1.5 \mathrm{~s} \quad P=12 \mathrm{~W}$

Practice Problem (Power)

2. A 43 N force is exerted through 2.0 m distance for 3.0 s . How much work was done?
$W=?$
$F=43 \mathrm{~N} \quad \mathrm{~W}=\mathrm{f} \times \mathrm{d} \quad \mathrm{W}=43 \mathrm{~N} \times 2.0 \mathrm{~m} \quad \mathrm{~W}=86 \mathrm{~J}$
$\mathrm{~d}=2.0 \mathrm{~m}$
How much power was used?

$P=?$ $W=86 \mathrm{~J}$ $\mathrm{t}=3.0 \mathrm{~s}$	$\mathrm{P}=\mathrm{W} / \mathrm{t}$
	$\mathrm{P}=86 \mathrm{~J} / 3.0 \mathrm{~s}$
	$\mathrm{P}=28.66 \mathrm{~W}$
	$\mathrm{P}=29 \mathrm{~W}$

Practice Problem (Power)

3. While rowing across the lake during a race, John does $3,960 \mathrm{~J}$ of work on the oars in 60.0 s . What is his power output in watts?

$P=?$	$P=W / t$	$P=66 \mathrm{~W}$
$\mathrm{~W}=3,960 \mathrm{~J}$	$\mathrm{~J}=3960 \mathrm{~J} / 60.0 \mathrm{~s}$	
$\mathrm{t}=60.0 \mathrm{~s}$	P	

$\mathrm{t}=60 \mathrm{0}$
$\mathrm{P}=3960 \mathrm{~J} / 60.0 \mathrm{~s}$

Practice Problem (Power)

4.Anna walks up the stairs on her way to class. She weighs 565 N , and the stairs go up 3.25 m vertically.
a. If Anna climbs the stairs in 12.6 s , what is her power output?

$\mathrm{P}=?$	$\mathrm{P}=\mathrm{W} / \mathrm{t}$
$\mathrm{W}=1836.25 \mathrm{~J}$	
$\mathrm{t}=12.6 \mathrm{~s}$	$\mathrm{P}=1836.25 \mathrm{~J} / 12.6 \mathrm{~s}$

$P=145.73 \mathrm{~W}$
$\mathrm{W}=1836.2$
$\mathrm{P}=1836.25 \mathrm{~J} / 12.6 \mathrm{~s}$
$\mathrm{P}=\mathrm{W} / \mathrm{t}$
$\mathrm{P}=1836.25 \mathrm{~J} / 10.5 \mathrm{~s}$
$\mathrm{N}=$?
$\mathrm{F}=565 \mathrm{~N}$
$\mathrm{W}=\mathrm{F} \times \mathrm{d}$
$\mathrm{W}=1836.25 \mathrm{~J}$

Machines

- A device that makes work easier.
- A machine can change the size, the direction, or the distance over which a force acts.
- They multiply force by using a small force to go a long distance
- Things like ramps, levers, etc. \rightarrow

$\mathrm{P}=174.88 \mathrm{~W}$

```
Mechanical Advantage
- How many times a machine multiplies the input force
- Mechanical advantage greater than }1\mathrm{ multiples force
- Less than 1 it multiplies distance, less force
    Forces involved:
-Input Force =Output Force
    F
    Force applied to
        a machine
    -F
    *Force applied
    by a machine
```

Calculating Mechanical Advantage
2 Formula: Calculating Mechanical Advantage

1. Mechanical Advantage $=$ output force input force
2. Mechanical Advantage $=$ input distance output distance
[^0]Determine if you are using force or distance first.

Practice Problem (Mechanical Advantage)

2. Alex pulls on the handle of a claw hammer with a force of 15 N . If the hammer has a mechanical advantage of 5.2 , how much force is exerted on the nail in the claw?
```
F out=?
MA =5.2
F in = 15 N
F
F out= 78 N
MA =5.2
Fout=5.2\times15N
```

MA $=5.2$
F in $=15$
F out $=5.2 \times 15 \mathrm{~N}$

Practice Problem (Mechanical Advantage)
3. If an input force of 202 N is applied to the handles of the wheelbarrow with a mechanical advantage of 2.2. How large is the output force that just lifts the load?

$M A=2.2$	$F_{\text {out }}=M A \times F_{\text {in }}$
$F_{\text {out }}=?$	$F_{\text {out }}=2.2 \times 202 \mathrm{~N}$
$\mathrm{~F}_{\text {in }}=202 \mathrm{~N}$	

4. Suppose you need to remove a nail from a board by using a claw hammer. What is the input distance for a claw hammer if the output distance is 2.0 m and the mechanical advantage is 5.5 ?

$M A=5.5$	$D_{\text {in }}=M A \times D_{\text {out }}$	$D_{\text {in }}=11 \mathrm{~m}$
$D_{\text {out }}=2.0 \mathrm{~m}$	$D_{\text {in }}=5.5 \times 2.0 \mathrm{~cm}$	
$D_{\text {in }}=?$		

$\mathrm{D}_{\mathrm{in}}=$?
$D_{\text {in }}=5.5 \times 2.0 \mathrm{~cm}$

Practice Problem (Mechanical Advantage)

1. Find the mechanical advantage of a ramp that is 6.0 m long and 1.5 m tall.

MA $=$ input distance/output distance
$\mathrm{MA}=6.0 \mathrm{~m} / 1.5 \mathrm{~m}$
MA $=4.0$
So, what was increased? Force, because it was great than 1

What is a Simple Machine?

- A simple machine has few or no moving parts.
- Simple machines make work easier
- Six types
- Levers, Incline Plan, Pulley, Wheel \& Axel, Wedge, Screw
- 2 Families
- Lever (Levers, Wheel \& Axel, Pulley)
- Incline Plan (Incline plan, wedge, screw)

1. THE LEVER

- A bar that is free to pivot, or move about a fixed point when an input force is applied.
- Fulcrum = the pivot point of a lever.
- There are three classes of levers based on the positioning of the effort force, resistance force, and fulcrum.

Class 1 Lever

Class 2 Lever

Class 3 Lever

Lever Family-1 ${ }^{\text {st }}$ Class

- The fulcrum is in the middle and the load and effort is on either side
- Makes work easier by multiplying the effort force AND changing direction.

Ex. See-saw, Hammer

Class 1 Lever

Lever Family- $3^{\text {rd }}$ Class

- The fulcrum is again at the end, but the effort is in the middle
- Does NOT multiply the effort force, only multiplies the distance.

Mechanical advantage of levers.

2.Wheels and Axles

- A lever that rotates in a circle.
- A combination of two wheels of different sizes.
- Smaller wheel is termed the axle
- IMA = radius of wheel/radius of axle

5. Screws

- A screw is an

 inclined plane wrapped around a shaft or cylinder.- The inclined plane allows the screw to move itself when rotated.

6. Pulleys

- Pulley are wheels with a groove around the outside
- A pulley needs a rope, chain or belt around the groove to make it do work
- They redirect force
- Enables us to use gravity to help us
(it is usually easier to pull down to lift something

- One end of rope has a force applied

Pulley types

- FIXED
- Can only change the direction of a force.
- $\mathrm{MA}=1$

IMA= Number of supporting ropes

MA = Count \# of ropes that apply an upward force (note the block and tackle!)

Compound Machines

Compound machine: a machine that combines more than one simple machine.

- Simple Machines can be put together in different ways to make complex machinery

[^0]: - MA = has no unit

 Force= Newtons
 Distance = meter

